

 Navigation

 	
 index

 	
 next |

 	django-angular 0.7.13 documentation

Welcome to django-angular’s documentation!

Django-Angular is a collection of utilities, which aim to ease the integration of Django [https://www.djangoproject.com/] with
AngularJS [http://angularjs.org/] by providing reusable components.

Project’s home

Check for the latest release of this project on Github [https://github.com/jrief/django-angular].

Please report bugs or ask questions using the Issue Tracker [https://github.com/jrief/django-angular/issues].

Contents

	Installation
	Dependencies
	Configuration

	Integrate AngularJS with Django
	XMLHttpRequest

	Template tags
	Partials

	Inlining Partials

	Dynamically generated Javascript code

	Bound Forms

	Running the demos
	Classic Form

	Form Validation

	Model Form

	Model Form Validation

	Three-Way Data-Binding

	Artificial form constraints

	Integrate a Django form with an AngularJS model
	Sample code

	Full working example
	Prefixing the form fields

	Working with nested forms

	Validate Django forms using AngularJS
	NgFormValidationMixin
	Render this form in a template
	More granular output

	Bound forms

	Combine NgFormValidationMixin with NgModelFormMixin
	An implementation note

	Customize detected and potential validation errors
	Adding form validation to customized fields

	Adding an AngularJS directive for validating form fields

	Perform basic CRUD operations
	Configuration

	Optional attributes
	fields

	slug

	Usage example

	Remote Method Invocation
	Single Page Applications
	Template Tag djng_all_rmi

	Template Tag djng_current_rmi

	Let the client invoke an allowed method from a Django View

	Dispatching Ajax requests using method GET

	Cross Site Request Forgery protection
	Configure Angular for Django’s CSRF protection

	Share a template between Django and AngularJS
	For this purpose use the template tag {% angularjs %}
	Conditionally activate variable expansion

	Example
	Python List / Javascript Arrays

	Conditionally bind scope variables to an element with djng-bind-if

	Manage Django URLs for AngularJS
	Basic operation principle

	Installation
	Angular

	Setting via Django Middleware

	Usage
	Parameters

	Examples

	Three-way data-binding
	Installation

	Demo

	Add three-way data-binding to an AngularJS application

	Release History
	0.7.14-dev

	0.7.13

	0.7.12

	0.7.11

	0.7.10

	0.7.9

	0.7.8

	0.7.7

	0.7.6

	0.7.5

	0.7.4

	0.7.3

	0.7.2

	0.7.1

	0.7.0

	0.6.3

	0.6.2

	0.6.1

	0.6.0

	0.5.0

	0.4.0

	0.3.0

	0.2.2

	0.2.1

	0.2.0

	0.1.4

	0.1.3

	0.1.2

	0.1.1

	0.1.0

Indices and tables

	Index

	Module Index

	Search Page

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-angular 0.7.13 documentation

Installation

Install Django-Angular. The latest stable release can be found on PyPI

pip install django-angular

or the newest development version from GitHub

pip install -e git+https://github.com/jrief/django-angular#egg=django-angular

Dependencies

	Django [http://djangoproject.com/] >=1.6

	AngularJS [http://angularjs.org/] >=1.2

Configuration

Add 'djangular' to the list of INSTALLED_APPS in your project’s settings.py file

INSTALLED_APPS = (
 ...
 'djangular',
 ...
)

Please don’t forget to define your STATIC_ROOT and STATIC_URL properly, then
launch the python manage.py collectstatic command to update your static content
with the JavaScript files provided by django-angular.

Note

django-angular does not define any database models. It can therefore easily be
installed without any database synchronization.

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-angular 0.7.13 documentation

Integrate AngularJS with Django

XMLHttpRequest

As a convention in web applications, Ajax requests shall send the HTTP-Header:

X-Requested-With: XMLHttpRequest

while invoking POST-requests. In AngularJS versions 1.0.x this was the default behavior, but in
versions 1.1.x this support has been dropped. Strictly speaking, Django applications do not require
this header, but if it is missing, all invocations to:

request.is_ajax()

would return False, even for perfectly valid Ajax requests. Thus, if you use AngularJS version
1.1.x or later, add the following statement during module instantiation:

var my_app = angular.module('MyApp').config(function($httpProvider) {
 $httpProvider.defaults.headers.common['X-Requested-With'] = 'XMLHttpRequest';
});

Template tags

Django and AngularJS share the same token for variable substitution in templates, ie.
{{ variable_name }}. This should not be a big problem, since you are discouraged to mix
Django template code with AngularJS template code. However, this recommendation is not
viable in all situations. Sometime there might be the need to mix both template languages, one
which is expanded by Django on the server, and one which is expanded by AngularJS in the browser.

The cleanest solution to circumvent this, is by using the verbatim [https://docs.djangoproject.com/en/1.5/ref/templates/builtins/#verbatim] tag, which became available in
Django 1.5.

A less clean solution, is to change the syntax of the AngularJS template tags. Just
add the following statement during module instantiation:

var my_app = angular.module('MyApp').config(function($interpolateProvider) {
 $interpolateProvider.startSymbol('{$');
 $interpolateProvider.endSymbol('$}');
});

Now, you can easily distinguish a server side variable substitution {{ varname }} from a client
side variable substitution {$ varname $}.

This approach is less verbose than using the verbatim tag. The problem, however, is that you
have to remember to use this alternative tag syntax for all of your AngularJS templates. It also
makes it difficult to integrate third party AngularJS directives, which are shipped with their own
templates.

Partials

In AngularJS, when used together with external templates, static HTML code often is loaded by a
`$templateCache`_. These so named partials can be placed in their own sub-directory below
STATIC_ROOT.

If, for some reason you need mixed template code, ie. one which first is expanded by Django and
later is parsed by AngularJS, then add a view such as

class PartialGroupView(TemplateView):
 def get_context_data(self, **kwargs):
 context = super(PartialGroupView, self).get_context_data(**kwargs)
 # update the context
 return context

Resolve this view in urls.py

partial_patterns = patterns('',
 url(r'^partial-template1.html$', PartialGroupView.as_view(template_name='partial-template1.html'), name='partial_template1'),
 # ... more partials ...,
)

urlpatterns = patterns('',
 # ...
 url(r'^partials/', include(partial_patterns, namespace='partials')),
 # ...
)

By using the utility function

from djangular.core.urlresolvers import urls_by_namespace

my_partials = urls_by_namespace('partials')

the caller obtains a list of all partials defined for the given namespace. This list can be used
when creating a Javascript array of URL’s to be injected into controllers or directives.

Inlining Partials

An alternative method for handling AngularJS’s partial code, is to use the special script type
text/ng-template and mixing it into existing HTML code. Say, an AngularJS directive
refers to a partial using templateUrl: 'template/mixed-ng-snipped.html' during the link phase,
then that partial may be embedded inside a normal Django template using

<script id="template/mixed-ng-snipped.html" type="text/ng-template">
 <div>{{ resolved_by_django }}</div>
 <div>{% verbatim %}{{ resolved_by_angular }}{% endverbatim %}</div>
</script>

or if the $interpolateProvider is used to replace the AngularJS template tags

<script id="template/mixed-ng-snipped.html" type="text/ng-template">
 <div>{{ resolved_by_django }}</div>
 <div>{$ resolved_by_angular $}</div>
</script>

Dynamically generated Javascript code

There might be good reasons to mix Django template with AngularJS template code. Consider a
multilingual application, where text shall be translated, using the Django translation [https://docs.djangoproject.com/en/1.5/topics/i18n/translation/] engine.

Also, sometimes your application must pass configuration settings, which are created by Django
during runtime, such as reversing a URL. These are the use cases when to mix Django template with
AngularJS template code. Remember, when adding dynamically generated Javascript code, to keep these
sections small and mainly for the purpose of configuring your AngularJS module. All other
Javascript code must go into separate static files!

Warning

Never use Django template code to dynamically generate AngularJS controllers or
directives. This will make it very hard to debug and impossible to add Jasmine [http://pivotal.github.io/jasmine/] unit tests to
your code. Always do a clear separation between the configuration of your AngularJS
module, which is part of your application, and the client side logic, which always shall be
independently testable without the need of a running Django server.

Bound Forms

AngularJS’s does not consider bound forms [https://docs.djangoproject.com/en/dev/ref/forms/api/#bound-and-unbound-forms], rather in their mindset data models shall be bound to
the form’s input fields by a controller function. This, for Django developers may be unfamiliar with
their way of thinking. Hence, if bound forms shall be rendered by Django, the behavior of AngularJS
on forms must be adopted using a special directive which overrides the built-in form directive [http://code.angularjs.org/1.2.14/docs/api/ng/directive/form].

To override the built-in behavior, refer to the Javascript file django-angular.js somewhere on
your page

<script src="{% static 'djangular/js/django-angular.min.js' %}" type="text/javascript"></script>

and add the module dependency to your application initialization

var my_app = angular.module('myApp', [/* other dependencies */, 'ng.django.forms']);

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-angular 0.7.13 documentation

Running the demos

Shipped with this project, there are four demo pages, showing how to use the AngularJS validation
and data-binding mechanisms in combination with Django forms. Use them as a starting point for your
own application using django-angular.

To run the demos, change into the directory examples and start the development server:

pip install -r requirements.txt
./manage.py runserver

You can also run unit tests:

./manage.py test

Now, point a browser onto one of

	http://localhost:8000/classic_form/

	http://localhost:8000/form_validation/

	http://localhost:8000/model_scope/

	http://localhost:8000/combined_validation/

	http://localhost:8000/threeway_databinding/

Classic Form

Classic Subscribe Form with no data validation.

Form Validation

The Form Validation demo shows how to implement a Django form with enriched functionality to
add AngularJS’s form validation in a DRY manner. This demo combines the classes
NgFormValidationMixin with Django’s forms.Form . This demo works without an AngularJS
controller.

Model Form

The Model Form demo shows how to combine a Django form with NgFormValidationMixin, which
creates an AngularJS model on the client in a DRY manner. This model, a Plain Old Javascript Object,
then can be used inside an AngularJS controller for all kind of purposes. Using an XMLHttpRequest,
this object can also be sent back to the server and bound to the same form is was created from.

Model Form Validation

The Model Form Validation shows how to combined both techniques from above, to create an AngularJS
model which additionally is validated on the client.

Three-Way Data-Binding

Three-Way Data-Binding shows how to combine a Django form with NgFormValidationMixin, so that
the form is synchronized by the server on all browsers accessing the same URL.

This demo is only available, if the external dependency Websocket for Redis [https://pypi.python.org/pypi/django-websocket-redis] has been installed.

Artificial form constraints

These demos are all based on the same form containing seven different input fields: CharField,
RegexField (twice), EmailField, DateField, IntegerField and FloadField. Each of those fields has
a different constraint:

	First name requires at least 3 characters.

	Last name must start with a capital letter.

	E-Mail must be a valid address.

	Phone number can start with + and may contain only digits, spaces and dashes.

	Birth date must be a vaild date.

	Weight must be an integer between 42 and 95.

	Height must be a float value between 1.48 and 1.95.

Additionally there are two artificial constraints defined by the server side validation, which for
obvious reasons require a HTTP round trip in order to fail. These are:

	The full name may not be “John Doe”

	The email address may not end in “@example.com”, “@example.net” or similar.

If the client bypasses client-side validation by deactivating JavaScript, the server validation
still rejects these error. Using form validation this way, incorrect form values always are rejected
by the server.

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-angular 0.7.13 documentation

Integrate a Django form with an AngularJS model

When deriving from Django’s forms.Form class in an AngularJS environment, it can be useful to
enrich the rendered form output with an AngularJS HTML tag, such as:

ng-model="model_name"

where model_name corresponds to the named field from the declared form class.

Sample code

Assume to have a simple Django form class with a single input field. Enrich its functionality
by mixing in the djangular class NgModelFormMixin

Note

Here the names NgModelForm... do not interrelate with Django’s forms.ModelForm.
Instead that name reflects the HTML attribute ng-model as used in <form>-elements
under control of AngularJS.

from django import forms
from django.utils import six
from djangular.forms import NgDeclarativeFieldsMetaclass, NgModelFormMixin

class ContactForm(six.with_metaclass(NgDeclarativeFieldsMetaclass, NgModelFormMixin, forms.Form)):
 subject = forms.CharField()
 # more fields ...

In the majority of cases, the Form is derived from Django’s forms.Form, so the above example
can be rewritten in a simpler way, by using the convenience class NgForm as a replacement:

from djangular.forms import NgModelFormMixin, NgForm

class MyValidatedForm(NgModelFormMixin, NgForm):
 # members as above

If the Form shall inherit from Django’s forms.ModelForm, use the convenience class
NgModelForm:

from djangular.forms import NgModelFormMixin, NgModelForm

class MyValidatedForm(NgModelFormMixin, NgModelForm):
 class Meta:
 model = Article

 # fields as usual

Now, each rendered form field gets an additional attribute ng-model containing the field’s name.
For example, the input field named subject now will be rendered as:

<input id="id_subject" type="text" name="subject" ng-model="subject" />

This means, that to a surrounding Angular controller, the field’s value is immediately added to its
$scope.

Full working example

This demonstrates how to submit form data using an AngularJS controller. The Django view handling
this unbound contact form class may look like

from django.views.generic import TemplateView

class ContactFormView(TemplateView):
 template = 'contact.html'

 def get_context_data(self, **kwargs):
 context = super(ContactFormView, self).get_context_data(**kwargs)
 context.update(contact_form=ContactForm())
 return context

with a template named contact.html:

<form ng-controller="MyFormCtrl" name="contact_form">
 {{contact_form}}
 <button ng-click="submit()">Submit</button>
</form>

and using some Javascript code to define the AngularJS controller:

my_app.controller('MyFormCtrl', function($scope, $http) {
 $scope.submit = function() {
 var in_data = { subject: $scope.subject };
 $http.post('/url/of/your/contact_form_view', in_data)
 .success(function(out_data) {
 // do something
 });
 }
});

Note that the <form> tag does not require any method or action attribute, since the
promise [https://en.wikipedia.org/wiki/Promise_(programming)] success in the controller’s submit function will handle any further action.
The success handler, for instance could load a new page or complain about missing fields. It now
it is even possible to build forms without using the <form> tag anymore. All what’s needed
from now on, is a working AngularJS controller.

As usual, the form view must handle the post data received through the POST (aka Ajax) request.
However, AngularJS does not send post data using multipart/form-data or
application/x-www-form-urlencoded encoding – rather, it uses plain JSON, which avoids an
additional decoding step.

Note

In real code, do not hard code the URL into an AngularJS controller as shown in this
example. Instead inject an object containing the URL into the form controller as explained
in manage Django URL’s for AngularJS

Add these methods to view class handling the contact form

import json
from django.views.decorators.csrf import csrf_exempt
from django.http import HttpResponseBadRequest

class ContactFormView(TemplateView):
 # use ‘get_context_data()’ from above

 @csrf_exempt
 def dispatch(self, *args, **kwargs):
 return super(ContactFormView, self).dispatch(*args, **kwargs)

 def post(self, request, *args, **kwargs):
 if not request.is_ajax():
 return HttpResponseBadRequest('Expected an XMLHttpRequest')
 in_data = json.loads(request.body)
 bound_contact_form = CheckoutForm(data={'subject': in_data.get('subject')})
 # now validate ‘bound_contact_form’ and use it as in normal Django

Warning

In real code, do not use the @csrf_exempt decorator, as shown here for
simplicity. Please read on how
to protect your views from Cross Site Request Forgeries.

Prefixing the form fields

The problem with this implementation, is that one must remember to access each form field three
times. Once in the declaration of the form, once in the Ajax handler of the AngularJS controller,
and once in the post handler of the view. This make maintenance hard and is a violation of the DRY
principle. Therefore it makes sense to add a prefix to the model names. One possibility would be to
add the argument scope_prefix on each form’s instantiation, ie.:

contact_form = ContactForm(scope_prefix='my_prefix')

This, however, has to be done across all instantiations of your form class. The better way is to
hard code this prefix into the constructor of the form class

class ContactForm(NgModelFormMixin, forms.Form):
 # declare form fields

 def __init__(self, *args, **kwargs):
 kwargs.update(scope_prefix='my_prefix')
 super(ContactForm, self).__init__(*args, **kwargs)

Now, in the AngularJS controller, the scope for this form starts with an object named my_prefix
containing an entry for each form field. This means that an input field, the is rendered
as:

<input id="id_subject" type="text" name="subject" ng-model="my_prefix.subject" />

This also simplifies the Ajax submit function, because now all input fields are available as a
single Javascript object, which can be posted as $scope.my_prefix to your Django view:

$http.post('/url/of/contact_form_view', $scope.my_prefix)

Working with nested forms

NgModelFormMixin is able to handle nested forms as well. Just remember to add the attribute
prefix='subform_name' with the name of the sub-form, during the instantiation of your main form.
Now your associated AngularJS controller adds this additional model to the object
$scope.my_prefix, keeping the whole form self-contained and accessible through one Javascript
object, aka $scope.my_prefix.

The Django view responsible for handling the post request of this form, automatically handles the
parsing of all bound form fields, even from the nested forms.

Note

Django, internally, handles the field names of nested forms by concatenating the prefix
with the field name using a dash ‘-’. This behavior has been overridden in order to
use a dot ‘.’, since this is the natural separator between Javascript objects.

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-angular 0.7.13 documentation

Validate Django forms using AngularJS

Django’s forms.Form [https://docs.djangoproject.com/en/dev/topics/forms/#form-objects] class offers many possibilities to validate a given form. This, for obvious
reasons is done on the server. However, customers may not always accept to submit a form, just to
find out that they missed to input some correct data into a field. Therefore, adding client side
form validation is a good idea and very common. But since client side validation easily can be
bypassed, the same validation has to occur a second time, when the server accepts the forms data
for final processing.

This leads to code duplication and generally violates the DRY principle!

NgFormValidationMixin

A workaround to this problem is to use Django’s form declaration to automatically generate client
side validation code, suitable for AngularJS. By adding a special mixin class to the form class,
this can be achieved automatically and on the fly

from django import forms
from django.utils import six
from djangular.forms import NgDeclarativeFieldsMetaclass, NgFormValidationMixin

class MyValidatedForm(six.with_metaclass(NgDeclarativeFieldsMetaclass, NgFormValidationMixin, forms.Form)):
 form_name = 'my_valid_form'
 surname = forms.CharField(label='Surname', min_length=3, max_length=20)
 age = forms.DecimalField(min_value=18, max_value=99)

In the majority of cases, the Form is derived from Django’s forms.Form, so the above example
can be rewritten in a simpler way, by using the convenience class NgForm as a replacement:

from djangular.forms import NgFormValidationMixin, NgForm

class MyValidatedForm(NgFormValidationMixin, NgForm):
 # members as above

If the Form shall inherit from Django’s forms.ModelForm, use the convenience class
NgModelForm:

from djangular.forms import NgFormValidationMixin, NgModelForm

class MyValidatedForm(NgFormValidationMixin, NgModelForm):
 class Meta:
 model = Article

 # fields as usual

Each page under control of AngularJS requires a unique form name, otherwise the AngularJS’s form
validation engine shows undefined behavior. Therefore you must name each form inheriting from
NgFormValidationMixin. If a form is used only once per page, the form’s name can be added to
the class declaration, as shown above. If no form name is specified, it defaults to form,
limiting the number of validated forms per page to one.

If a form inheriting from NgFormValidationMixin shall be instantiated more than once per page,
each instance of that form must be instantiated with a different name. This then must be done in
the constructor of the form, by passing in the argument form_name='my_form'.

In the view class, add the created form to the rendering context:

def get_context_data(self, **kwargs):
 context = super(MyRenderingView, self).get_context_data(**kwargs)
 context.update(form=MyValidatedForm())
 return context

or if the same form declaration shall be used more than once:

def get_context_data(self, **kwargs):
 context = super(MyRenderingView, self).get_context_data(**kwargs)
 context.update(form1=MyValidatedForm(form_name='my_valid_form1'),
 form2=MyValidatedForm(form_name='my_valid_form2'))
 return context

Note

Do not use an empty label when declaring a form field, otherwise the class
NgFormValidationMixin won’t be able to render AngularJS’s validation error elements.
This also applies to auto_id, which if False, will not include <label> tags while
rendering the form.

Render this form in a template

<form name="{{ form.form_name }}" novalidate>
 {{ form }}
 <input type="submit" value="Submit" />
</form>

Remember to add the entry name="{{ form.form_name }}" to the form element, otherwise AngularJS’s
validation engine won’t work. Use the directive novalidate to disable the browser’s native form
validation. If you just need AngularJS’s built in form validation mechanisms without customized
checks on the forms data, there is no need to add an ng-controller onto a wrapping HTML element.
The only measure to take, is to give each form on a unique name, otherwise the AngularJS form
validation engine shows undefined behavior.

Forms which do not validate on the client, probably shall not be posted. This can simply be disabled
by replacing the submit button with the following HTML code:

<input type="submit" class="btn" ng-disabled="{{ form.form_name }}.$invalid" value="Submit">

Note

On Django-1.5, some field constraints, such as the attributes min_length and
max_length, are ignored when used with NgFormValidationMixin. This has been fixed
in Django-1.6 .

More granular output

If the form fields shall be explicitly rendered, the potential field validation errors can be
rendered in templates using a special field tag. Say, the form contains

from django import forms
from djangular.forms import NgFormValidationMixin

class MyValidatedForm(NgFormValidationMixin, forms.Form):
 email = forms.EmailField(label='Email')

then access the potential validation errors in templates using {{ form.email.errors }}. This
renders the form with an unsorted list of potential errors, which may occur during client side
validation.

<ul class="djng-form-errors" ng-hide="subscribe_form.email.$pristine">
 <li ng-show="subscribe_form.email.$error.required" class="ng-hide">This field is required.
 <li ng-show="subscribe_form.email.$error.email" class="">Enter a valid email address.

The AngularJS form validation engine, normally hides these potential errors. They only become
visible, if the user enters an invalid email address.

Bound forms

If the form is bound [https://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.BoundField.errors] and rendered, then errors detected by the server side’s validation code are
rendered as unsorted list in addition to the list of potential errors. Both of these error lists are
rendered using their own elements. The behavior for potential errors remains the same, but
detected errors are hidden the moment, the user sets the form into a dirty state.

Note

AngularJS normally hides the content of bound forms, which means that <input> fields
seem empty, even if their value attribute is set. In order to restore the content of
those input fields to their default value, initialize your AngularJS application with
angular.module('MyApp', ['ng.django.forms']);.

Combine NgFormValidationMixin with NgModelFormMixin

While it is possible to use NgFormValidationMixin on itself, it is perfectly legal to mix
NgModelFormMixin with NgFormValidationMixin. However, a few precautions have to be taken.

On class declaration inherit first from NgModelFormMixin and afterward from
NgFormValidationMixin. Valid example:

from django import forms
from djangular.forms import NgFormValidationMixin, NgModelFormMixin

class MyValidatedForm(NgModelFormMixin, NgFormValidationMixin, forms.Form):
 # custom form fields

but don’t do this

class MyValidatedForm(NgFormValidationMixin, NgModelFormMixin, forms.Form):
 # custom form fields

Another precaution to take, is to use different names for the forms name and the scope_prefix.
So, this is legal

form = MyValidatedForm(form_name='my_form', scope_prefix='my_model')

but this is not

form = MyValidatedForm(form_name='my_form', scope_prefix='my_form')

An implementation note

AngularJS names each input field to validate, by concatenating its forms name with its fields name.
This object member then contains an error object, named my_form.field_name.$error filled by
the AngularJS validation mechanism. The placeholder for the error object would clash with
ng-model, if the form name is identical to the scope prefix. Therefore, just remember to use
different names.

Customize detected and potential validation errors

If a form with AngularJS validation is rendered, each input field is prefixed with an unsorted list
 of potential validation errors. For each possible constraint violation, a list item
 containing a descriptive message is added to that list.

If a client enters invalid data into that form, AngularJS unhides one of these prepared error
messages, using ng-show [http://docs.angularjs.org/api/ng.directive:ngShow]. The displayed message text is exactly the same as would be shown if
the server side code complains about invalid data during form validation. These prepared error
messages can be customized during form field definition [https://docs.djangoproject.com/en/dev/ref/forms/fields/#error-messages].

The default error list is rendered as <ul class="djng-form-errors">.... To each
of this error list, the attribute class="invalid" is added. The last list-item
<li class="valid"> is somehow special, as it is only visible if the corresponding input
field contains valid data. By using special style sheets, one can for instance add a green
tick after a validated input field, to signal that everything is OK.

The styling of these validation elements must be done through CSS, for example with:

ul.djng-form-errors {
 margin-left: 0;
 display: inline-block;
 list-style-type: none;
}
ul.djng-form-errors li.invalid {
 color: #e9322d;
}
ul.djng-form-errors li.invalid:before {
 content: "\2716\20"; /* adds a red cross before the error message */
}
ul.djng-form-errors li.valid:before {
 color: #00c900;
 content: "\2714"; /* adds a green tick */
}

If you desire an alternative CSS class or an alternative way of rendering the list of errors, then
initialize the form instance with

class MyErrorList(list):
 # rendering methods go here

during form instantiation
my_form = MyForm(error_class=MyErrorList)

Refer to TupleErrorList on how to implement an alternative error list renderer. Currently this
error list renderer, renders two -elements for each input field, one to be shown for
pristine forms and one to be shown for dirty forms.

Adding form validation to customized fields

Django’s form validation is not 1:1 compatible with AngularJS’s validation. Therefore djangular
is shipped with a mapping module, which translate Django’s form validation to AngularJS. This module
is located in djangular.forms.patched_fields.

If you need to add or to replace any of these mappings, create a Python module which implements an
alternative mapping to the module shipped with djangular. Refer to an alternative module in your
settings.py with the configuration directive DJANGULAR_VALIDATION_MAPPING_MODULE.

For further information about how to use form validation with AngularJS, please refer to the
demo pages.

Adding an AngularJS directive for validating form fields

Sometimes it can be useful to add a generic field validator on the client side, which can be
controlled by the form’s definition on the server. One such example is Django’s DateField:

from django import forms

class MyForm(forms.Form):
 # other fields
 date = forms.DateField(label='Date',
 widget=forms.widgets.DateInput(attrs={'validate-date': '^(\d{4})-(\d{1,2})-(\d{1,2})$'}))

Since AngularJS can not validate dates, such a field requires a customized directive, which with
the above definition, will be added as new attribute to the input element for date:

<input name="date" ng-model="my_form_data.birth_date" type="text" validate-date="^(\d{4})-(\d{1,2})-(\d{1,2})$" />

If your AngularJS application has been initialized with

angular.module('MyApp', ['ng.django.forms']);

then this new attribute is detected by the AngularJS directive validateDate, which in turn
checks the date for valid input and shows the content of the errors fields, if not.

If you need to write a reusable component for customized form fields, refer to that directive as a
starting point.

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-angular 0.7.13 documentation

Perform basic CRUD operations

When using Angular’s $resource [http://docs.angularjs.org/api/ngResource.$resource] to build services, each service comes with free CRUD
(create, read, update, delete) methods:

{ 'get': {method:'GET'},
 'save': {method:'POST'},
 'query': {method:'GET', isArray:true},
 'remove': {method:'DELETE'},
 'delete': {method:'DELETE'}
};

Of course this need support on the server side. This can easily be done with djangular
NgCRUDView.

Note

remove() and delete() do exactly the same thing. Usage of remove() is
encouraged, since delete is a reserved word in IE.

Configuration

Subclass NgCRUDView and override model attribute:

from djangular.views.crud import NgCRUDView

class MyCRUDView(NgCRUDView):
 model = MyModel

Add urlconf entry pointing to the view:

...
url(r'^crud/mymodel/?$', MyCRUDView.as_view(), name='my_crud_view'),
...

Set up Angular service using $resource:

var myServices = angular.module('myServices', ['ngResource']);

myServices.factory('MyModel', ['$resource', function($resource) {
 return $resource('/crud/mymodel/', {'pk': '@pk'}, {
 });
}]);

Note

Since there is a known bug with $resource not respecting trailing slash, the urls in Django urlconf used by $resource
must either not have trailing slash or it should be optional (preferred) - e.g. url/?. Adding the trailing slash
to the $resource configuration regardless (/crud/mymodel/) ensures future compatibility in case the bug gets fixed and
will then follow Django’s trailing slash convention. This has been fixed in AngularJS 1.3. More information here trailingSlashBugFix [https://github.com/kwk/docker-registry-frontend/commit/d2b34b79c669d68bb1c587aab819b48157a790e7]

Another quick change is required to Angular app config, without this DELETE requests fail CSRF test:

var my_app = angular.module('myApp', [/* other dependencies */, 'ngCookies']).run(
 function($http, $cookies) {
 $http.defaults.headers.post['X-CSRFToken'] = $cookies.csrftoken;
 // Add the following two lines
 $http.defaults.xsrfCookieName = 'csrftoken';
 $http.defaults.xsrfHeaderName = 'X-CSRFToken';
 });

That’s it. Now you can use CRUD methods.

Optional attributes

The following options are currently available to subclasses of NgCRUDView:

fields

Set this to a tuple or list of field names for only retrieving a subset of model fields during a
get or query operation. Alternatively, if this may vary (e.g. based on query parameters or
between get and query) override the get_fields() method instead.

With None (default), all model fields are returned. The object identifier (pk) is always
provided, regardless of the selection.

slug

Similar to Django’s SingleObjectMixin, objects can be selected using an alternative key such as a
title or a user name. Especially when using the ngRoute module [http://docs.angularjs.org/api/ngRoute] of AngularJS, this makes
construction of descriptive URLs easier. Query parameters can be extracted directly from $route [http://docs.angularjs.org/api/ngRoute/service/$route]
or $routeParams [http://docs.angularjs.org/api/ngRoute/service/$routeParams] and passed to the query.

This attribute (default is 'slug') describes the field name in the model as well as the query
parameter from the client. For example, if it is set to 'name', perform a query using

var model = MyModel.get({name: "My name"});

Note

Although the view will not enforce it, it is strongly recommended that you only use unique
fields for this purpose. Otherwise this can lead to a MultipleObjectsReturned
exception, which is not handled by this implementation.

Also note that you still need to pass the object identifier pk on update and delete
operations. Whereas for save operations, the check on pk makes the distinction between
an update and a create operation, this restriction on deletes is only for safety purposes.

Usage example

myControllers.controller('myCtrl', ['$scope', 'MyModel', function ($scope, MyModel) {
 // Query returns an array of objects, MyModel.objects.all() by default
 $scope.models = MyModel.query();

 // Getting a single object
 var model = MyModel.get({pk: 1});

 // We can crete new objects
 var new_model = new MyModel({name: 'New name'});
 new_model.$save(function(){
 $scope.models.push(new_model);
 });
 // In callback we push our new object to the models array

 // Updating objects
 new_model.name = 'Test name';
 new_model.$save();

 // Deleting objects
 new_model.$remove();
 // This deletes the object on server, but it still exists in the models array
 // To delete it in frontend we have to remove it from the models array

}]);

Note

In real world applications you might want to restrict access to certain methods.
This can be done using decorators, such as @login_required.
For additional functionality JSONResponseMixin and
NgCRUDView can be used together.

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-angular 0.7.13 documentation

Remote Method Invocation

Wouldn’t it be nice to call a Django view method, directly from an AngularJS controller, similar
to a Remote Procedure Call [http://en.wikipedia.org/wiki/Remote_procedure_calls] or say better Remote Method Invocation?

Single Page Applications

By nature, Single Page Web Applications implemented in Django, require one single View. These kind
of applications can however not always be build around the four possible request methods GET,
PUT, POST and DELETE. They rather require many different entry points to fulfill the
communication between the client and the server.

Normally, this is done by adding a key to the request data, which upon evaluation calls the
appropriate method. However, such an approach is cumbersome and error-prone.

Django-Angular offers some helper functions, which allows the client to call a Django’s View
method, just as if it would be a normal asynchronous JavaScript function. To achieve this, let the
View’s class additionally inherit from JSONResponseMixin:

from django.views.generic import View
from djangular.views.mixins import JSONResponseMixin, allow_remote_invocation

class MyJSONView(JSONResponseMixin, View):
 # other view methods

 @allow_remote_invocation
 def process_something(self, in_data):
 # process in_data
 out_data = {
 'foo': 'bar',
 'success': True,
 }
 return out_data

In this Django View, the method process_something is decorated with @allow_remote_invocation.
It now can be invoked directly from an AngularJS controller or directive. To handle this in an
ubiquitous manner, Django-Angular implements two special template tags, which exports all
methods allowed for remote invocation to the provided AngularJS service djangoRMI.

Template Tag djng_all_rmi

The AngularJS Provider djangoRMIProvider shall be configured during the initialization of the
client side, such as:

{­% load djangular_tags %­}
…
<script type="text/javascript">
my_app.config(function(djangoRMIProvider) {
 djangoRMIProvider.configure({­% djng_all_rmi %­});
});
</script>

This makes available all methods allowed for remote invocation, from all View classes of your
Django project.

Template Tag djng_current_rmi

Alternatively, the AngularJS Provider djangoRMIProvider can be configured during the
initialization of the client side, such as:

{­% load djangular_tags %­}
…
<script type="text/javascript">
my_app.config(function(djangoRMIProvider) {
 djangoRMIProvider.configure({­% djng_current_rmi %­});
});
</script>

This makes available all methods allowed for remote invocation, from the current View class,
ie. the one rendering the current page.

Let the client invoke an allowed method from a Django View

By injecting the service djangoRMI into an AngularJS controller, allowed methods from the
Django View which renders the current page, can be invoked directly from JavaScript. This example
shows how to call the above Python method process_something, when configured using the template
tag djng_current_rmi:

my_app.controller("SinglePageCtlr", function($scope, djangoRMI) {
 $scope.invoke = function() {
 var in_data = { some: 'data' };
 djangoRMI.process_something(in_data)
 .success(function(out_data) {
 // do something with out_data
 });
 };
});

If djangoRMIProvider is configured using the template tag djng_all_rmi, the allowed
methods are grouped into objects named by their url_name [https://docs.djangoproject.com/en/dev/ref/urlresolvers/#django.core.urlresolvers.ResolverMatch.url_name]. If these URL patterns [https://docs.djangoproject.com/en/dev/ref/urls/#patterns] are part of a
namespace [https://docs.djangoproject.com/en/dev/ref/urlresolvers/#django.core.urlresolvers.ResolverMatch.namespace], the above objects furthermore are grouped into objects named by their namespace.

Note

djangoRMI is a simple wrapper around AngularJS’s built in $http service [https://code.angularjs.org/1.2.16/docs/api/ng/service/$http]. However, it
automatically determines the correct URL and embeds the method name into the special
HTTP-header DjNg-Remote-Method. In all other aspects, it behaves like the
$http service [https://code.angularjs.org/1.2.16/docs/api/ng/service/$http].

Dispatching Ajax requests using method GET

Sometimes you only have to retrieve some data from the server. If you prefer to fetch this data
using an ordinary GET request, ie. one without the special AngularJS provider djangoRMI, then
it is possible to hard-code the method for invocation into the urlpatterns [https://docs.djangoproject.com/en/dev/ref/urls/#django.conf.urls.patterns] inside the URL
dispatcher.

class MyResponseView(JSONResponseMixin, View):
 def get_some_data(self):
 return {'foo': 'bar'}

 def get_other_data(self):
 return ['baz', 'cap']

urlpatterns = patterns('',
 …
 url(r'^fetch-some-data.json$', MyResponseView.as_view(), {'invoke_method': 'get_some_data'}),
 url(r'^fetch-other-data.json$', MyResponseView.as_view(), {'invoke_method': 'get_other_data'}),
 …
)

If a client calls the URL /fetch-some-data.json, the responding view dispatches incoming
requests directly onto the method get_some_data. This kind of invocation only works for GET
requests. Here these methods do not require the decorator @allow_remote_invocation,
since now the server-side programmer is responsible for choosing the correct method and thus a
malicious client cannot bypass the intended behavior.

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-angular 0.7.13 documentation

Cross Site Request Forgery protection

Ajax requests submitted using method POST are put to a similar risk for
Cross Site Request Forgeries [http://www.squarefree.com/securitytips/web-developers.html#CSRF] as HTTP forms. This type of attack occurs when a malicious Web site
is able to invoke an Ajax request onto your Web site. In Django, one should always add the template
tag csrf_token [https://docs.djangoproject.com/en/1.6/ref/templates/builtins/#csrf-token] to render a hidden input field containing the token, inside each form submitted by
method POST.

When it comes to making an Ajax request, it normally is not possible to pass that token using a
Javascript object, because scripts usually are static and no secret can be added dynamically.
AngularJS natively supports CSRF protection, only some minor configuration is required to work with Django.

Configure Angular for Django’s CSRF protection

Angular looks for XSRF-TOKEN cookie and submits it in X-XSRF-TOKEN http header, while Django sets csrftoken
cookie and expects X-CSRFToken http header. All we have to do is change the name of cookie and header Angular uses.
This is best done in config block:

var my_app = angular.module('myApp', [/* dependencies */]).config(function($httpProvider) {
 $httpProvider.defaults.xsrfCookieName = 'csrftoken';
 $httpProvider.defaults.xsrfHeaderName = 'X-CSRFToken';
});

When using this approach, ensure that the CSRF cookie is not configured as HTTP_ONLY [http://www.codinghorror.com/blog/2008/08/protecting-your-cookies-httponly.html],
otherwise for security reasons that value can’t be accessed from JavaScript.

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-angular 0.7.13 documentation

Share a template between Django and AngularJS

Templates syntax for Django and AngularJS is very similar, and with some caveats it is possible to
reuse a Django template for rendering in AngularJS. The classical approach to embed AngularJS
template code inside Django’s template code, is to use the {% verbatim %} template tag.
This tag however deactivates all Django’s template parsing, so every block tag must be placed
outside a {% verbatim %} ... {% endverbatim %} section. This makes mixed template coding
quite messy.

For this purpose use the template tag {% angularjs %}

The template tag {% angularjs %} ... {% endangularjs %} delegates Django’s variable
expansion to AngularJS, but continues to process the Django block tags, such as {% if ... %},
{% for ... %}, {% load ... %}, etc.

Conditionally activate variable expansion

The template tag {% angularjs <arg> %} takes one optional argument, which when it evaluates to
true, it turns on AngularJS’s variable expansion. Otherwise, if it evaluates to false, it turns on
Django’s variable expansion. This becomes handy when using include snippets which then can be used
by both, the client and the server side template rendering engines.

Example

A Django ListView produces a list of items and this list is serializable as JSON. For browsers
without JavaScript and for crawlers from search engines, these items shall be rendered through the
Django’s template engine. Otherwise, AngularJS shall iterate over this list and render these items.

Template used by the list view:

<div ng-if="!items">
{% for item in items %}
 {% include "path/to/includes/item-detail.html" with ng=0 %}
{% endfor %}
</div>
<div ng-if="items">
{% include "path/to/includes/item-detail.html" with ng=1 %}
</div>

Here the scope variable items is set by a surrounding ng-controller. As we can see, the
template path/to/includes/item-detail.html is included twice, once defining an additional
context variable ng as true and later, the same include with that variable as false.

Assume, this list view shall render a model, which contains the following fields:

class Item(models.Model):
 title = CharField(max_length=50)
 image = ImageField() # built-in or from a third party library
 description = HTMLField() # from a third party library

 def get_absolute_url(self):
 return reverse(...)

Now, the included template can be written as:

{% load djangular_tags %}
{% angularjs ng %}
<div{% if ng %} ng-repeat="item in items"{% endif %}>
 <h4><a ng-href="{{ item.absolute_url }}"{% if not ng %} href="{{ item.absolute_url }}"{% endif %}>{{ item.name }}</h4>

 <div{% if ng %} ng-bind-html="item.description"{% endif %}>{% if not ng %}{{ item.description }}{% endif %}</div>
</div>
{% endangularjs %}

A few things to note here:

The content between the template tags {% angularjs ng %} and {% endangularjs %} is rendered
through the Django template engine as usual, if the context variable ng evaluates to false.
Otherwise all variable expansions, ie. {{ varname }} or {{ varname|filter }} are kept as-is
in HTML, while block tags are expanded by the Django template engine.

The context data, as created by the list view, must be processed into a list serializable as
JSON. This list then can be used directly by the Django template renderer or transferred to the
AngularJS engine, using a XMLHttpRequest or other means.

This means that the default method get_context_data() must resolve all object fields into basic
values, since invocations to models methods, such as get_absolute_url(), now can not be done
by the template engine, during the iteration step, ie. {% for item in items %}. The same applies
for image thumbnailing, etc.

In AngularJS references onto URLs [https://docs.angularjs.org/api/ng/directive/ngHref] and image sources [https://docs.angularjs.org/api/ng/directive/ngSrc] must be done with <a ng-href="...">
and , rather than using or
respectively. Therefore, while rendering the Django template, these fields are added twice.

In AngularJS, text data containing HTML tags, must be rendered using ng-bind-html [https://docs.angularjs.org/api/ng/directive/ngBindHtml] rather than
using the mustache syntax. This is to ensure, that unverified content from upstream sources is
sanitized. We can assert this, since this text content is coming from the database field
description and thus is marked as safe string [https://docs.djangoproject.com/en/dev/ref/utils/#module-django.utils.safestring] by Django.

Python List / Javascript Arrays

The Django template engine accesses members of Python dictionaries using the dot notation. This is
the same notation as used by JavaScript to access members of objects. When accessing lists in Django
templates or arrays in JavaScript, this notation is not compatible any more. Therefore as
convenience, always use the Django template notation, even for JavaScript arrays. Say, in Python
you have a list of objects:

somelist = [{'member': 'first'}, {'member': 'second'}, {'member': 'third'},]

To access the third member, Django’s template code shall be written as:

{{ somelist.2.member }}

when this block is resolved for AngularJS template rendering, the above code is expanded to:

{{ somelist[2].member }}

otherwise it would be impossible to reuse Python lists converted to JavaScript arrays inside the
same template code.

Conditionally bind scope variables to an element with djng-bind-if

Sometimes it makes sense to bind the scope variable to an element if it exists. Otherwise render
the same variable from Django’s context. Example:

{{ some_prefix.value }}

functionally, this is equivalent to:

{% verbatim %}{{ some_prefix.value }}{% endverbatim %}
{{ some_prefix.value }}

but less verbose and easier to read.

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-angular 0.7.13 documentation

Manage Django URLs for AngularJS

AngularJS controllers communicating with the Django application through Ajax, often require URLs,
pointing to some of the views of your application. Don’t fall into temptation to hard code such a
URL into the client side controller code. Even worse would be to create Javascript dynamically using
a template engine. There is a clean and simple solution to solve this problem.

Note

Until version 0.7 django-angular reversed all existing URLs of a project and created
an object exposing them to Javascript. Documentation for now deprecated approach is available
here.

Starting with version 0.8, django-angular provides a new way to handle URLs, which offers
the reversing functionality directly to AngularJS modules.

This service is provided by djangoUrl.reverse(name, args_or_kwargs) method. It behaves
exactly like Django’s URL template tag [https://docs.djangoproject.com/en/dev/ref/templates/builtins/#url].

Basic operation principle

django-angular encodes the parameters passed to djangoUrl.reverse() into a special URL
starting with /angular/reverse/.... This URL is used as a new entry point for the real HTTP
invocation.

Installation

Angular

	Include django-angular.js:

<script src="{% static 'djangular/js/django-angular.js' %}"></script>

	Add ng.django.urls as a dependency for you app:

<script>
 var my_app = angular.module('MyApp', ['ng.django.urls', /* other dependencies */]);
</script>

The djangoUrl service is now available through dependency injection [http://docs.angularjs.org/guide/di] to all directives and
controllers.

Setting via Django Middleware

	Add 'djangular.middlewares.DjangularUrlMiddleware' to MIDDLEWARE_CLASSES in your Django

settings.py file:

MIDDLEWARE_CLASSES = (
 'djangular.middleware.DjangularUrlMiddleware',
 # Other middlewares
)

Warning

This must be the first middleware included in MIDDLEWARE_CLASSES

Using this approach adds some magicness to your URL routing, because the DjangularUrlMiddleware
class bypasses the HTTP request from normal URL resolving and calls the corresponding view function
directly.

Usage

The reversing functionality is provided by:

djangoUrl.reverse(name, args_or_kwargs)

This method behaves exactly like Django’s URL template tag [https://docs.djangoproject.com/en/dev/ref/templates/builtins/#url] {% url 'named:resource' %}.

Parameters

	name: The URL name you wish to reverse, exactly the same as what you would use in
{% url %} template tag.

	args_or_kwargs (optional): An array of arguments, e.g. ['article', 4] or an object of
keyword arguments, such as {'type': 'article', 'id': 4}.

Examples

A typical Angular Controller would use the service djangoUrl such as:

var myApp = angular.module('MyApp', ['ng.django.urls']);

myApp.controller('RemoteItemCtrl', ['$scope', '$http', 'djangoUrl', function($scope, $http, djangoUrl) {

 $scope.loadItem = function() {
 var fetchItemURL = djangoUrl.reverse('namespace:fetch-item');
 $http.get(fetchItemURL).success(function(item) {
 console.log('Fetched item: ' + item);
 }).error(function(msg) {
 console.error('Unable to fetch item. Reason: ' + msg);
 });
 }

}]);

and with args:

$http.get(djangoUrl.reverse('api:articles', [1]))

or with kwargs:

$http.get(djangoUrl.reverse('api:articles', {'id': 1}))

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-angular 0.7.13 documentation

Three-way data-binding

One of AngularJS biggest selling propositions is its two-way data-binding [http://docs.angularjs.org/guide/databinding]. Two way data-binding
is an automatic way of updating the view whenever the model changes, as well as updating the model
whenever the view changes.

With djangular and the additional module django-websocket-redis [https://github.com/jrief/django-websocket-redis], one can extend this feature
to reflect all changes to a model, back and forward with a corresponding object stored on the
server. This means that the server “sees” whenever the model on the client changes and can by
itself, modify values on the client side at any time, without having the client to poll for new
messages. This is very useful, when the server wants to inform the client about asynchronous events
such as sport results, chat messages or multi-player game events.

Installation

If you want to use three-way data-binding with Django, the webbrowser must have support for
websockets. Nowadays, most modern browsers do so.

Install django-websocket-redis from PyPI:

pip install django-websocket-redis

and follow the configuration instructions [http://django-websocket-redis.readthedocs.org/en/latest/installation.html].

Demo

In the examples directory there is a demo showing the capabilities. If ws4redis can be found in
the Python search path, this special demo should be available together with the other two examples.
Run the demo server:

cd examples
./manage runserver

point a browser onto http://localhost:8000/threeway_databinding/ and fill the input fields.
Point a second browser onto the same URL. The fields content should be the same in all browsers.
Change some data, the fields content should update concurrently in all attached browsers.

Add three-way data-binding to an AngularJS application

Refer to the Javascript file django-angular.js somewhere on your page:

<script src="{{ STATIC_URL }}djangular/js/django-angular.min.js" type="text/javascript"></script>

add the module dependency to your application initialization:

var my_app = angular.module('myApp', [/* other dependencies */, 'ng.django.websocket']);

configure the websocket module with a URL prefix of your choice:

my_app.config(function(djangoWebsocketProvider) {
 // use '/ws' as the websocket's prefix
 djangoWebsocketProvider.prefix('/ws');

 // optionally inform about the connection status in the browser's console
 djangoWebsocketProvider.debug(true);
});

If you want to bind the data model in one of your AngularJS controllers, you must inject the
provider djangoWebsocket into this controller and then attach the websocket to the server.

app.controller('MyController', function($scope, djangoWebsocket) {
 djangoWebsocket.connect($scope, ['subscribe-broadcast', 'publish-broadcast'], 'my_collection');

 // use $scope.my_collection as root object for the data which shall be three-way bound
});

This creates a websocket attached to the server sides message queue via the module ws4redis.
It then shallow watches the properties of the object named 'my_collection', which contains the
model data. It then fires whenever any of the properties change (for arrays, this implies watching
the array items; for object maps, this implies watching the properties). If a change is detected,
it is propagated up to the server. Changes made to the corresponding object on the server side,
are immediately send back to the client.

Note

This feature is new and experimental, but due to its big potential, it will be regarded
as one of the key features in future versions of django-angular.

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	django-angular 0.7.13 documentation

Release History

0.7.14-dev

0.7.13

	Change for Forms inheriting from NgFormBaseMixin using field_css_classes as dict:
CSS classes specified as default now must explicitly be added the fields defining their own
CSS classes. Before this was implicit.

	Added AngularJS directive djng-bind-if. See docs for details.

	Reverted fix for FireFox checkbox change sync issue (135) since it manipulated the DOM. Instead
added scope.$apply() which fixes the issue on FF.

	In BS3 styling, added CheckboxFieldRenderer to CheckboxInlineFieldRenderer (the default),
so that forms with multiple checkbox input fields can be rendered as block items instead of
inlines.

	In BS3 styling, added RadioFieldRenderer to RadioInlineFieldRenderer (the default), so
that forms with multiple radio input fields can be rendered as block items instead of inlines.

	Fixed ‘classic form’ issue whereby ngModel was not being added to select of textarea
elements, so returned errors where not displayed.

0.7.12

	No functional changes.

0.7.11

	Using field.html_name instead of field.name. Otherwise add_prefix() function on
form objects doesn’t work properly.

	Fixed Firefox checkbox change sync issue caused by click```and ``change```firing in
opposite order to other browsers. Switched to ``ng-change to normalise behaviour.

	Moved rejected error cleanup logic into field.clearRejected method, so that it can be
removed from anywhere that has access to the field.

	Fixed issue in rejected error clean up loop.

	Added missing subfield cleanup to rejected error cleanup loop.

	Added AngularJS service djangoUrl to resolve URLs on the client in the same way as on
the server.

0.7.10

	Fixed inheritance problem (#122) caused by a metaclass conflicting with Django’s
DeclarativeFieldsMetaclass. This now should fix some issues when using forms.ModelForm.
This fix changed the API slightly.

	Fixed expansion for templatetag {% angularjs %} (#117) when using lists in Python / arrays
in JavaScript.

0.7.9

	TupleErrorList has been adopted to fully support Django-1.7.

0.7.8

	Fixed: ng-minlength and ng-maxlength are not set to None if unset.

	Fixed: Concatenated latest version of django-angular.js.

0.7.7

	Refactored the code base. It now is much easier to understand the code and to add custom
Fields and Widgets.

	Fixed the behaviour of all Widgets offered by Django. They now all validate independently of the
method (Post or Ajax) used to submit data to the server.

0.7.6

	Fixed regression when using Bootstrap3FormMixin in combination with widgets.CheckboxSelectMultiple.

0.7.5

	Added: Template tag {% angularjs %} which allows to share templates between Django and AngularJS.

	Fixed: Using {{ field.error }} returned unsafe text.

	Fixed: Adjust the regular expression and run grunt build.

0.7.4

	Fixed: Error rendering while for hidden input fields.

	Fixed: Bootstrap3 styling: label for field was rendered as lazy object instead of string.

	Added: Url resolvers for angular controllers.

0.7.3

	Added support to render a Django Form using a plugable style. Bootstrap3 styling has been
implemented.

	Added AngularJS directive for <input> fields: They now add a dummy ngModel to some
input fields, so that Forms using the NgFormBaseMixin honor the pristine state and display
an error list from the bound form.

	Replaced AngularJS directive for form by a directive for ngModel. This directive
restores the values in bound forms otherwise not vivible in the browser.

	Fixed: Instead of adding attributes to Form Field Widgets, those additional attributes now are
added on the fly while rendering. This caused some problems, when Forms were reused in different
contexts.

	Fixed: Behavior for BooleanField and MultipleChoiceField has been fixed so AngularJS form
validation.

0.7.2

	Fixed: select fields, multiple select fields, radio and checkbox input fields and text areas are
handled by the built-in form directive to adopt Django’s bound forms for AngularJS.

0.7.1

	For remote method invocation, replace keyword action against a private HTTP-header
DjNg-Remote-Method. Added template tags djng_all_rmi and djng_current_rmi which
return a list of methods to be used for remote invocation.

	Experimental support for Python-3.3.

0.7.0

	Refactored errors handling code for form validation.
It now is much easier and more flexible for mixing in other form based classes.

	Added a date validator using an AngularJS directive.
* Can be used as a starting point for other customized validators.

	Added another view, which can be used for NgModelMixin without NgValidationMixin.

	Added new directory to handle client code.
* Separated JS files for easier development.
* Grunt now builds, verifies and concatenates that code.
* Karma and Jasmine run unit tests for client code.
* A minified version of django-angular.js is build by grunt and npm-uglify.

	Rewritten the demo pages to give a good starting point for your own projects.

0.6.3

	ADOPT YOUR SOURCES:
The Javascript file /static/js/djng-websocket.js has been moved and renamed to
/static/djangular/js/django-angular.js

	Internal error messages generated by server side validation, now are mixed with AngularJS’s
validation errors.

	A special list-item is added to the list of errors. It is shown if the input field contains valid
data.

	Input fields of bound forms, now display the content of the field, as expected. This requires the
Angular module ng.django.forms.

0.6.2

	Refactored NgFormValidationMixin, so that potential AngularJS errors do not interfere with
Django’s internal error list. This now allows to use the same form definition for bound and
unbound forms.

0.6.1

	Bug fix for CRUD view.

0.6.0

	Support for basic CRUD view.

0.5.0

	Added three way data binding.

0.4.0

	Removed @csrf_exempt on dispatch method for Ajax requests.

0.3.0

Client side form validation for Django forms using AngularJS

0.2.2

	Removed now useless directive ‘auto-label’. For backwards compatibility
see https://github.com/jrief/angular-shims-placeholder

0.2.1

	Set Cache-Control: no-cache for Ajax GET requests.

0.2.0

	added handler to mixin class for ajax get requests.

	moved unit tests into testing directory.

	changed request.raw_post_data -> request.body.

	added possibility to pass get and post requests through to inherited view class.

0.1.4

	optimized CI process

0.1.3

	added first documents

0.1.2

	better packaging support

0.1.1

	fixed initial data in NgModelFormMixin

0.1.0

	initial revision

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	django-angular 0.7.13 documentation

Index

 Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

 _static/comment-close.png

_static/up-pressed.png

manage-urls.html

 Navigation

 		
 index

 		django-angular 0.7.13 documentation »

Manage Django URL’s for AngularJS

Warning

This is now a deprecated way of handling Django urls for AngularJS. For current
approach see updated docs.

You may have noticed, that AngularJS controllers sometimes need a URL pointing to a Django view of
your application. Do not enter into temptation to hard code such a URL into the client side
controller code. Nor enter into temptation to create Javascript dynamically using a template
engine. There is a clean and simple solution to solve this problem.

It is good practice to add configuration directives to applications as constants to the AngularJS
module definition [http://docs.angularjs.org/api/angular.module]. This can safely be done in the template code rendered by Django, where it
belongs!

Installation

It is assumed that your AngularJS application has already been initialized and that you have loaded
django-angular tags, {% load djangular_tags %}:

{% load djangular_tags %}
<script>
 var my_app = angular.module('MyApp', ['ng.django.urls', /* other dependencies */]);
</script>

Now, you have to include django-angular.js and add data about your django url configuration:

<script src="{% static 'djangular/js/django-angular.js' %}"></script>
<script>angular.module('ng.django.urls').constant('patterns', {% load_djng_urls %});</script>

The djangoUrl service is then available through dependency injection [http://docs.angularjs.org/guide/di]
to all directives and controllers.

Usage

The reversing functionality is provided by djangoUrl.reverse(name, args_or_kwargs) method. It behaves much like the
django’s url template tag.

Parameters

		name

		The url name you wish to reverse, exactly the same as what you would use in {% url %} template tag.

		args_or_kwargs (optional)

		An array of arguments, e.g. ['article', 4] or an object of keyword arguments,
such as {'type': 'article', 'id': 4}.

Example

my_app.controller('MyCtrl', ['$scope', '$http', 'djangoUrl',
 function($scope, $http, djangoUrl) {

 $http.post(djangoUrl.reverse('api:articles', [1]), {action: 'get_data'})
 .success(function (out_data) {
 $scope.data = out_data;
 });

 // Or $http.post(djangoUrl.reverse('api:articles', {'id': 1}) ...
 // djangoUrl.reverse('api:article', {'id': 1}) returns something like '/api/article/1/'
 }]);

Parametrized URL templates

djangoUrl’s reverse() method also provides an option to create parametrized URL templates, which can be used with
Angular’s $resource. These templates look something like: /api/articles/:id/, parameters prefixed by : are
filled by Angular.

You can create parametrized templates by using reverse() method in keyword arguments mode. Parameters not present
in keyword arguments object will be replaced by : prefixed name from urlpatterns.

my_app.controller('MyCtrl', ['$scope', '$http', 'djangoUrl',
 function($scope, $http, djangoUrl) {
// Urlconf
// ...
// url(r'^api/(?P<type>\w+)/(?P<id>\d+)/$', api.models, name='api'),
// ...

// djangoUrl.reverse('api', {'id': 1, 'type': 'article'}) -> /api/article/1/
// djangoUrl.reverse('api', {'id': 1}) -> /api/:type/1/
// djangoUrl.reverse('api', {'type': 'article'}) -> /api/article/:id/
// djangoUrl.reverse('api', {}) -> /api/:type/:id/
// djangoUrl.reverse('api') -> /api/:type/:id/
// When nothing is passed as args_or_kwargs argument, reverse() defaults
// to keyword arguments mode
}]);

So when building a service with $resource you can use djangoUrl.reverse() method just to make a parametrized
URL template, or to partially fill it and have Angular add other arguments.

my_app.controller('MyCtrl', ['$resource', 'djangoUrl', function($resource, djangoUrl) {

 var Article = $resource(djangoUrl.reverse('api'), {'id': '@id', 'type': 'article'});
 // or
 var Article = $resource(djangoUrl.reverse('api', {'type': 'article'}), {id: '@id'});

 }]);

 © Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

tutorial-forms.html

 Navigation

 		
 index

 		django-angular 0.7.13 documentation »

Tutorial: Django Forms with AngularJS

Django offers an excellent Form framework which is responsible for rendering and validating HTML
forms. Since Django’s design philosophy is to be independent of the styling and JavaScript, this
Form framework requires some adoption in order to play well with AngularJS and optionally Bootstrap.

A common technique to adopt the styling of a Django Form, is to extend the template so that each
Form field is rendered by hand written HTML. This of course leads to code duplication and is a
violation of the DRY principle.

An alternative technique is to add crispy-forms [http://django-crispy-forms.readthedocs.org/] to your project and enrich the Django Forms with a
helper class. Unfortunately, crispy-form does not work very well with django-angular. In
order to add the same functionality in a “DRY” manner, a special Mixin class can be added to your
forms, rather than having to work with helper-classes.

This tutorial attempts to explain how to combine the Django Form framework in combination with
AngularJS and Bootstrap.

Basic Form Submission

Lets start with a very basic example, a functioning demo is available here: http://djangular.aws.awesto.com/base_form/

Say, we have a simple but rather long Form definition, to subscribe a person wanting to visit us:

Since we want to render this form in a DRY manner, our favorite template syntax is something such
as:

<form name="{{ form.form_name }}" method="post" action=".">
 {% csrf_token %}
 {{ form }}
 <input type="submit" value="Subscribe">
</form>

In this example, the whole form is rendered in one pass including all HTML elements, such as
<label>, <select>, <option> and <input>. Additionally, bound forms are rendered with
their preset values and a list of errors, if the previous Form validation did not succeed.

The Django Form framework comes with three different rendering methods: as_p, as_ul and
as_table (the default). Unfortunately, these three rendering methods are not suitable for
nowadays needs, such as Bootstrap styling and Ajax based Form validation.

In order to be more flexible without having to abandon the “DRY” way of working, the above
SubscriptionForm has been enriched by the Mixin class Bootstrap3FormMixin. This class adds
an additional method as_div, which is responsible for rendering the Form suitable for Bootstrap
styling.

Additionally, this Mixin class wraps the list of validation errors occurred during the last Form
validation into the AngularJS directive ng-show, so that error messages disappear after the
user starts typing and thus puts the Form into a “dirty”, or say non-pristine, state.

You can test this yourself, by leaving out some fields or entering invalid values and submitting
the Form.

Bound Form in AngularJS

AngularJS does not take into account the concept of bound Forms. Therefore, input fields rendered
with preset values, are displayed as empty fields. To circumvent this, the django-angular
Form directive re-enables the rendering of the bound field values.

Dynamically Hiding Form Fields for Bootstrap

A common use case is to hide a form field based on the value of another. For example, to hide the
phone field if the user selects Female within SubscriptionForm, overwrite
field_css_classes on SubscriptionForm:

field_css_classes = {
 '*': 'form-group has-feedback',
 'phone': "ng-class:{'ng-hide':sex==='f'}",
}

field_css_classes adds css classes to the wrapper div surrounding individual fields in bootstrap.
In the above example, '*' adds the classes form-group has-feedback to all fields within the
form and 'ng-class:{"ng-hide":sex==="f"}' is added only to the phone field. Only Angular
directives that can be used as CSS classes are allowed within field_css_classes. Additionally,
if specified as a string, the string may not contain any spaces or double quotes. However, if
specified as a list, spaces can be used, and the above example can be rewritten as:

field_css_classes = {
 '*': 'form-group has-feedback',
 'phone': ["ng-class: {'ng-hide': sex==='f'};"],
}

By adding the keyword '__default__' to this list, the CSS classes for the default entry,
ie. '*', are merged with the CSS classes for the current field.

Client-side Form validation

To enable client-side Form validation, simply add the mixin class NgFormValidationMixin to
the SubscriptionForm class:

class SubscriptionForm(NgFormValidationMixin, Bootstrap3FormMixin, forms.Form):
 # form fields as usual

Here the rendered Form contains all the AngularJS directives as required for client side Form
validation. If an entered value does not match the criteria as defined by the definition of
SubscriptionForm, AngularJS will notify the user immediately

 © Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

_static/unbound-form.png
@® Mrs. O Mr.

First name

Last name

Street

ZIP code ’* ‘Location

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		django-angular 0.7.13 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright Copyright 2015, Jacob Rief.
 Created using Sphinx 1.2.2.

_static/file.png

_static/plus.png

_static/minus.png

_static/comment.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/badge-rtd.png
{ 18 Read the Docs

