
django-angular Documentation
Release 0.8.3

Jacob Rief

July 31, 2016

Contents

1 Project’s home 3

2 Contents 5
2.1 Installation . 5
2.2 Integrate AngularJS with Django . 6
2.3 Running the demos . 8
2.4 Integrate a Django form with an AngularJS model . 10
2.5 Validate Django forms using AngularJS . 13
2.6 Tutorial: Django Forms with AngularJS . 17
2.7 Perform basic CRUD operations . 19
2.8 Remote Method Invocation . 21
2.9 Cross Site Request Forgery protection . 24
2.10 Share a template between Django and AngularJS . 24
2.11 Manage Django URLs for AngularJS . 26
2.12 Three-way data-binding . 29
2.13 Release History . 30

3 Indices and tables 37

i

ii

django-angular Documentation, Release 0.8.3

Django-Angular is a collection of utilities, which aim to ease the integration of Django with AngularJS by providing
reusable components.

Contents 1

https://www.djangoproject.com/
http://angularjs.org/

django-angular Documentation, Release 0.8.3

2 Contents

CHAPTER 1

Project’s home

Check for the latest release of this project on Github.

Please report bugs or ask questions using the Issue Tracker.

3

https://github.com/jrief/django-angular
https://github.com/jrief/django-angular/issues

django-angular Documentation, Release 0.8.3

4 Chapter 1. Project’s home

CHAPTER 2

Contents

2.1 Installation

Install Django-Angular. The latest stable release can be found on PyPI

pip install django-angular

or the newest development version from GitHub

pip install -e git+https://github.com/jrief/django-angular#egg=django-angular

2.1.1 Dependencies

• Django >=1.6

• AngularJS >=1.2

Configuration

Add ’djng’ to the list of INSTALLED_APPS in your project’s settings.py file

INSTALLED_APPS = (
...
'djng',
...

)

Please don’t forget to define your STATIC_ROOT and STATIC_URL properly, then launch the python
manage.py collectstatic command to update your static content with the JavaScript files provided by
django-angular.

Note: django-angular does not define any database models. It can therefore easily be installed without any database
synchronization.

5

http://djangoproject.com/
http://angularjs.org/

django-angular Documentation, Release 0.8.3

2.2 Integrate AngularJS with Django

2.2.1 XMLHttpRequest

As a convention in web applications, Ajax requests shall send the HTTP-Header:

X-Requested-With: XMLHttpRequest

while invoking POST-requests. In AngularJS versions 1.0.x this was the default behavior, but in versions 1.1.x this
support has been dropped. Strictly speaking, Django applications do not require this header, but if it is missing, all
invocations to:

request.is_ajax()

would return False, even for perfectly valid Ajax requests. Thus, if you use AngularJS version 1.1.x or later, add the
following statement during module instantiation:

var my_app = angular.module('MyApp').config(function($httpProvider) {
$httpProvider.defaults.headers.common['X-Requested-With'] = 'XMLHttpRequest';

});

2.2.2 Template tags

Django and AngularJS share the same token for variable substitution in templates, ie. {{ variable_name }}.
This should not be a big problem, since you are discouraged to mix Django template code with AngularJS template
code. However, this recommendation is not viable in all situations. Sometime there might be the need to mix both
template languages, one which is expanded by Django on the server, and one which is expanded by AngularJS in the
browser.

The cleanest solution to circumvent this, is by using the verbatim tag, which became available in Django 1.5.

A less clean solution, is to change the syntax of the AngularJS template tags. Just add the following statement during
module instantiation:

var my_app = angular.module('MyApp').config(function($interpolateProvider) {
$interpolateProvider.startSymbol('{$');
$interpolateProvider.endSymbol('$}');

});

Now, you can easily distinguish a server side variable substitution {{ varname }} from a client side variable
substitution {$ varname $}.

This approach is less verbose than using the verbatim tag. The problem, however, is that you have to remember to
use this alternative tag syntax for all of your AngularJS templates. It also makes it difficult to integrate third party
AngularJS directives, which are shipped with their own templates.

Partials

In AngularJS, when used together with external templates, static HTML code often is loaded by a $templateCache.
These so named partials can be placed in their own sub-directory below STATIC_ROOT.

If, for some reason you need mixed template code, ie. one which first is expanded by Django and later is parsed by
AngularJS, then add a view such as

6 Chapter 2. Contents

https://docs.djangoproject.com/en/stable/ref/templates/builtins/#verbatim
https://docs.angularjs.org/api/ng/service/\protect \T1\textdollar templateCache

django-angular Documentation, Release 0.8.3

class PartialGroupView(TemplateView):
def get_context_data(self, **kwargs):

context = super(PartialGroupView, self).get_context_data(**kwargs)
update the context
return context

Resolve this view in urls.py

partial_patterns = patterns('',
url(r'^partial-template1.html$', PartialGroupView.as_view(template_name='partial-template1.html'), name='partial_template1'),
... more partials ...,

)

urlpatterns = patterns('',
...
url(r'^partials/', include(partial_patterns, namespace='partials')),
...

)

By using the utility function

from djng.core.urlresolvers import urls_by_namespace

my_partials = urls_by_namespace('partials')

the caller obtains a list of all partials defined for the given namespace. This list can be used when creating a Javascript
array of URL’s to be injected into controllers or directives.

Inlining Partials

An alternative method for handling AngularJS’s partial code, is to use the special script type text/ng-template
and mixing it into existing HTML code. Say, an AngularJS directive refers to a partial using templateUrl:
’template/mixed-ng-snipped.html’ during the link phase, then that partial may be embedded inside a
normal Django template using

<script id="template/mixed-ng-snipped.html" type="text/ng-template">
<div>{{ resolved_by_django }}</div>
<div>{% verbatim %}{{ resolved_by_angular }}{% endverbatim %}</div>

</script>

or if the $interpolateProvider is used to replace the AngularJS template tags

<script id="template/mixed-ng-snipped.html" type="text/ng-template">
<div>{{ resolved_by_django }}</div>
<div>{$ resolved_by_angular $}</div>

</script>

Dynamically generated Javascript code

There might be good reasons to mix Django template with AngularJS template code. Consider a multilingual applica-
tion, where text shall be translated, using the Django translation engine.

Also, sometimes your application must pass configuration settings, which are created by Django during runtime,
such as reversing a URL. These are the use cases when to mix Django template with AngularJS template code.
Remember, when adding dynamically generated Javascript code, to keep these sections small and mainly for the
purpose of configuring your AngularJS module. All other Javascript code must go into separate static files!

2.2. Integrate AngularJS with Django 7

https://docs.djangoproject.com/en/stable/topics/i18n/translation/

django-angular Documentation, Release 0.8.3

Warning: Never use Django template code to dynamically generate AngularJS controllers or directives. This will
make it very hard to debug and impossible to add Jasmine unit tests to your code. Always do a clear separation
between the configuration of your AngularJS module, which is part of your application, and the client side logic,
which always shall be independently testable without the need of a running Django server.

2.2.3 Bound Forms

AngularJS’s does not consider bound forms, rather in their mindset data models shall be bound to the form’s input
fields by a controller function. This, for Django developers may be unfamiliar with their way of thinking. Hence,
if bound forms shall be rendered by Django, the behavior of AngularJS on forms must be adopted using a special
directive which overrides the built-in form directive.

To override the built-in behavior, refer to the Javascript file django-angular.js somewhere on your page

<script src="{% static 'djng/js/django-angular.min.js' %}" type="text/javascript"></script>

and add the module dependency to your application initialization

var my_app = angular.module('myApp', [/* other dependencies */, 'djng.forms']);

2.3 Running the demos

Shipped with this project, there are four demo pages, showing how to use the AngularJS validation and data-binding
mechanisms in combination with Django forms. Use them as a starting point for your own application using django-
angular.

To run the demos, change into the directory examples and start the development server:

pip install -r requirements.txt
./manage.py runserver

You can also run unit tests:

./manage.py test

Now, point a browser onto one of

• http://localhost:8000/classic_form/

• http://localhost:8000/form_validation/

• http://localhost:8000/model_scope/

• http://localhost:8000/combined_validation/

• http://localhost:8000/threeway_databinding/

2.3.1 Classic Form

Classic Subscribe Form with no data validation.

8 Chapter 2. Contents

http://pivotal.github.io/jasmine/
https://docs.djangoproject.com/en/dev/ref/forms/api/#bound-and-unbound-forms
http://code.angularjs.org/1.2.14/docs/api/ng/directive/form
http://localhost:8000/classic_form/
http://localhost:8000/form_validation/
http://localhost:8000/model_scope/
http://localhost:8000/combined_validation/
http://localhost:8000/threeway_databinding/

django-angular Documentation, Release 0.8.3

2.3.2 Form Validation

The Form Validation demo shows how to implement a Django form with enriched functionality to add AngularJS’s
form validation in a DRY manner. This demo combines the classes NgFormValidationMixin with Django’s
forms.Form . This demo works without an AngularJS controller.

2.3.3 Model Form

The Model Form demo shows how to combine a Django form with NgFormValidationMixin, which creates an
AngularJS model on the client in a DRY manner. This model, a Plain Old Javascript Object, then can be used inside
an AngularJS controller for all kind of purposes. Using an XMLHttpRequest, this object can also be sent back to the
server and bound to the same form is was created from.

2.3.4 Model Form Validation

The Model Form Validation shows how to combined both techniques from above, to create an AngularJS model which
additionally is validated on the client.

2.3.5 Three-Way Data-Binding

Three-Way Data-Binding shows how to combine a Django form with NgFormValidationMixin, so that the form
is synchronized by the server on all browsers accessing the same URL.

This demo is only available, if the external dependency Websocket for Redis has been installed.

2.3.6 Artificial form constraints

These demos are all based on the same form containing seven different input fields: CharField, RegexField (twice),
EmailField, DateField, IntegerField and FloadField. Each of those fields has a different constraint:

• First name requires at least 3 characters.

• Last name must start with a capital letter.

• E-Mail must be a valid address.

• Phone number can start with + and may contain only digits, spaces and dashes.

• Birth date must be a vaild date.

• Weight must be an integer between 42 and 95.

• Height must be a float value between 1.48 and 1.95.

Additionally there are two artificial constraints defined by the server side validation, which for obvious reasons require
a HTTP round trip in order to fail. These are:

• The full name may not be “John Doe”

• The email address may not end in “@example.com”, “@example.net” or similar.

If the client bypasses client-side validation by deactivating JavaScript, the server validation still rejects these error.
Using form validation this way, incorrect form values always are rejected by the server.

2.3. Running the demos 9

https://pypi.python.org/pypi/django-websocket-redis

django-angular Documentation, Release 0.8.3

2.4 Integrate a Django form with an AngularJS model

When deriving from Django’s forms.Form class in an AngularJS environment, it can be useful to enrich the rendered
form output with an AngularJS HTML tag, such as:

ng-model="model_name"

where model_name corresponds to the named field from the declared form class.

2.4.1 Sample code

Assume to have a simple Django form class with a single input field. Enrich its functionality by mixing in the djng
class NgModelFormMixin

Note: Here the names NgModelForm... do not interrelate with Django’s forms.ModelForm. Instead that name
reflects the HTML attribute ng-model as used in <form>-elements under control of AngularJS.

from django import forms
from django.utils import six
from djng.forms import NgDeclarativeFieldsMetaclass, NgModelFormMixin

class ContactForm(six.with_metaclass(NgDeclarativeFieldsMetaclass, NgModelFormMixin, forms.Form)):
subject = forms.CharField()
more fields ...

In the majority of cases, the Form is derived from Django’s forms.Form, so the above example can be rewritten in
a simpler way, by using the convenience class NgForm as a replacement:

from djng.forms import NgModelFormMixin, NgForm

class MyValidatedForm(NgModelFormMixin, NgForm):
members as above

If the Form shall inherit from Django’s forms.ModelForm, use the convenience class NgModelForm:

from djng.forms import NgModelFormMixin, NgModelForm

class MyValidatedForm(NgModelFormMixin, NgModelForm):
class Meta:

model = Article

fields as usual

Now, each rendered form field gets an additional attribute ng-model containing the field’s name. For example, the
input field named subject now will be rendered as:

<input id="id_subject" type="text" name="subject" ng-model="subject" />

This means, that to a surrounding Angular controller, the field’s value is immediately added to its $scope.

2.4.2 Full working example

This demonstrates how to submit form data using an AngularJS controller. The Django view handling this unbound
contact form class may look like

10 Chapter 2. Contents

django-angular Documentation, Release 0.8.3

from django.views.generic import TemplateView

class ContactFormView(TemplateView):
template = 'contact.html'

def get_context_data(self, **kwargs):
context = super(ContactFormView, self).get_context_data(**kwargs)
context.update(contact_form=ContactForm())
return context

with a template named contact.html:

<form ng-controller="MyFormCtrl" name="contact_form">
{{contact_form}}
<button ng-click="submit()">Submit</button>

</form>

and using some Javascript code to define the AngularJS controller:

my_app.controller('MyFormCtrl', function($scope, $http) {
$scope.submit = function() {

var in_data = { subject: $scope.subject };
$http.post('/url/of/your/contact_form_view', in_data)

.success(function(out_data) {
// do something

});
}

});

Note that the <form> tag does not require any method or action attribute, since the promise success in the
controller’s submit function will handle any further action. The success handler, for instance could load a new page or
complain about missing fields. It now it is even possible to build forms without using the <form> tag anymore. All
what’s needed from now on, is a working AngularJS controller.

As usual, the form view must handle the post data received through the POST (aka Ajax) request. However, Angu-
larJS does not send post data using multipart/form-data or application/x-www-form-urlencoded
encoding – rather, it uses plain JSON, which avoids an additional decoding step.

Note: In real code, do not hard code the URL into an AngularJS controller as shown in this example. Instead inject
an object containing the URL into the form controller as explained in manage Django URL’s for AngularJS

Add these methods to view class handling the contact form

import json
from django.views.decorators.csrf import csrf_exempt
from django.http import HttpResponseBadRequest

class ContactFormView(TemplateView):
use ‘get_context_data()’ from above

@csrf_exempt
def dispatch(self, *args, **kwargs):

return super(ContactFormView, self).dispatch(*args, **kwargs)

def post(self, request, *args, **kwargs):
if not request.is_ajax():

return HttpResponseBadRequest('Expected an XMLHttpRequest')
in_data = json.loads(request.body)

2.4. Integrate a Django form with an AngularJS model 11

https://en.wikipedia.org/wiki/Promise_(programming)

django-angular Documentation, Release 0.8.3

bound_contact_form = CheckoutForm(data={'subject': in_data.get('subject')})
now validate ‘bound_contact_form’ and use it as in normal Django

Warning: In real code, do not use the @csrf_exempt decorator, as shown here for simplicity. Please read on
how to protect your views from Cross Site Request Forgeries.

Prefixing the form fields

The problem with this implementation, is that one must remember to access each form field three times. Once in the
declaration of the form, once in the Ajax handler of the AngularJS controller, and once in the post handler of the view.
This make maintenance hard and is a violation of the DRY principle. Therefore it makes sense to add a prefix to the
model names. One possibility would be to add the argument scope_prefix on each form’s instantiation, ie.:

contact_form = ContactForm(scope_prefix='my_prefix')

This, however, has to be done across all instantiations of your form class. The better way is to hard code this prefix
into the constructor of the form class

class ContactForm(NgModelFormMixin, forms.Form):
declare form fields

def __init__(self, *args, **kwargs):
kwargs.update(scope_prefix='my_prefix')
super(ContactForm, self).__init__(*args, **kwargs)

Now, in the AngularJS controller, the scope for this form starts with an object named my_prefix containing an entry
for each form field. This means that an input field, the is rendered as:

<input id="id_subject" type="text" name="subject" ng-model="my_prefix.subject" />

This also simplifies the Ajax submit function, because now all input fields are available as a single Javascript object,
which can be posted as $scope.my_prefix to your Django view:

$http.post('/url/of/contact_form_view', $scope.my_prefix)

Working with nested forms

NgModelFormMixin is able to handle nested forms as well. Just remember to add the attribute
prefix=’subform_name’ with the name of the sub-form, during the instantiation of your main form. Now
your associated AngularJS controller adds this additional model to the object $scope.my_prefix, keeping the
whole form self-contained and accessible through one Javascript object, aka $scope.my_prefix.

The Django view responsible for handling the post request of this form, automatically handles the parsing of all bound
form fields, even from the nested forms.

Note: Django, internally, handles the field names of nested forms by concatenating the prefix with the field name
using a dash ‘-’. This behavior has been overridden in order to use a dot ‘.’, since this is the natural separator between
Javascript objects.

12 Chapter 2. Contents

django-angular Documentation, Release 0.8.3

2.5 Validate Django forms using AngularJS

Django’s forms.Form class offers many possibilities to validate a given form. This, for obvious reasons is done on the
server. However, customers may not always accept to submit a form, just to find out that they missed to input some
correct data into a field. Therefore, adding client side form validation is a good idea and very common. But since
client side validation easily can be bypassed, the same validation has to occur a second time, when the server accepts
the forms data for final processing.

This leads to code duplication and generally violates the DRY principle!

2.5.1 NgFormValidationMixin

A workaround to this problem is to use Django’s form declaration to automatically generate client side validation code,
suitable for AngularJS. By adding a special mixin class to the form class, this can be achieved automatically and on
the fly

from django import forms
from django.utils import six
from djng.forms import NgDeclarativeFieldsMetaclass, NgFormValidationMixin

class MyValidatedForm(six.with_metaclass(NgDeclarativeFieldsMetaclass, NgFormValidationMixin, forms.Form)):
form_name = 'my_valid_form'
surname = forms.CharField(label='Surname', min_length=3, max_length=20)
age = forms.DecimalField(min_value=18, max_value=99)

In the majority of cases, the Form is derived from Django’s forms.Form, so the above example can be rewritten in
a simpler way, by using the convenience class NgForm as a replacement:

from djng.forms import NgFormValidationMixin, NgForm

class MyValidatedForm(NgFormValidationMixin, NgForm):
members as above

If the Form shall inherit from Django’s forms.ModelForm, use the convenience class NgModelForm:

from djng.forms import NgFormValidationMixin, NgModelForm

class MyValidatedForm(NgFormValidationMixin, NgModelForm):
class Meta:

model = Article

fields as usual

Each page under control of AngularJS requires a unique form name, otherwise the AngularJS’s form validation engine
shows undefined behavior. Therefore you must name each form inheriting from NgFormValidationMixin. If a
form is used only once per page, the form’s name can be added to the class declaration, as shown above. If no form
name is specified, it defaults to form, limiting the number of validated forms per page to one.

If a form inheriting from NgFormValidationMixin shall be instantiated more than once per page, each instance
of that form must be instantiated with a different name. This then must be done in the constructor of the form, by
passing in the argument form_name=’my_form’.

In the view class, add the created form to the rendering context:

def get_context_data(self, **kwargs):
context = super(MyRenderingView, self).get_context_data(**kwargs)
context.update(form=MyValidatedForm())
return context

2.5. Validate Django forms using AngularJS 13

https://docs.djangoproject.com/en/dev/topics/forms/#form-objects

django-angular Documentation, Release 0.8.3

or if the same form declaration shall be used more than once:

def get_context_data(self, **kwargs):
context = super(MyRenderingView, self).get_context_data(**kwargs)
context.update(form1=MyValidatedForm(form_name='my_valid_form1'),

form2=MyValidatedForm(form_name='my_valid_form2'))
return context

Note: Do not use an empty label when declaring a form field, otherwise the class NgFormValidationMixin
won’t be able to render AngularJS’s validation error elements. This also applies to auto_id, which if False, will not
include <label> tags while rendering the form.

Render this form in a template

<form name="{{ form.form_name }}" novalidate>
{{ form }}
<input type="submit" value="Submit" />

</form>

Remember to add the entry name="{{ form.form_name }}" to the form element, otherwise AngularJS’s
validation engine won’t work. Use the directive novalidate to disable the browser’s native form validation. If you
just need AngularJS’s built in form validation mechanisms without customized checks on the forms data, there is no
need to add an ng-controller onto a wrapping HTML element. The only measure to take, is to give each form
on a unique name, otherwise the AngularJS form validation engine shows undefined behavior.

Forms which do not validate on the client, probably shall not be posted. This can simply be disabled by replacing the
submit button with the following HTML code:

<input type="submit" class="btn" ng-disabled="{{ form.form_name }}.$invalid" value="Submit">

Note: On Django-1.5, some field constraints, such as the attributes min_length and max_length, are ignored
when used with NgFormValidationMixin. This has been fixed in Django-1.6 .

More granular output

If the form fields shall be explicitly rendered, the potential field validation errors can be rendered in templates using a
special field tag. Say, the form contains

from django import forms
from djng.forms import NgFormValidationMixin

class MyValidatedForm(NgFormValidationMixin, forms.Form):
email = forms.EmailField(label='Email')

then access the potential validation errors in templates using {{ form.email.errors }}. This renders the form
with an unsorted list of potential errors, which may occur during client side validation.

<ul class="djng-form-errors" ng-hide="subscribe_form.email.$pristine">
<li ng-show="subscribe_form.email.$error.required" class="ng-hide">This field is required.
<li ng-show="subscribe_form.email.$error.email" class="">Enter a valid email address.

14 Chapter 2. Contents

django-angular Documentation, Release 0.8.3

The AngularJS form validation engine, normally hides these potential errors. They only become visible, if the user
enters an invalid email address.

Bound forms

If the form is bound and rendered, then errors detected by the server side’s validation code are rendered as unsorted
list in addition to the list of potential errors. Both of these error lists are rendered using their own elements. The
behavior for potential errors remains the same, but detected errors are hidden the moment, the user sets the form into
a dirty state.

Note: AngularJS normally hides the content of bound forms, which means that <input> fields seem empty, even if
their value attribute is set. In order to restore the content of those input fields to their default value, initialize your
AngularJS application with angular.module(’MyApp’, [’djng.forms’]);.

Combine NgFormValidationMixin with NgModelFormMixin

While it is possible to use NgFormValidationMixin on itself, it is perfectly legal to mix NgModelFormMixin
with NgFormValidationMixin. However, a few precautions have to be taken.

On class declaration inherit first from NgModelFormMixin and afterward from NgFormValidationMixin.
Valid example:

from django import forms
from djng.forms import NgFormValidationMixin, NgModelFormMixin

class MyValidatedForm(NgModelFormMixin, NgFormValidationMixin, forms.Form):
custom form fields

but don’t do this

class MyValidatedForm(NgFormValidationMixin, NgModelFormMixin, forms.Form):
custom form fields

Another precaution to take, is to use different names for the forms name and the scope_prefix. So, this is legal

form = MyValidatedForm(form_name='my_form', scope_prefix='my_model')

but this is not

form = MyValidatedForm(form_name='my_form', scope_prefix='my_form')

An implementation note

AngularJS names each input field to validate, by concatenating its forms name with its fields name. This object
member then contains an error object, named my_form.field_name.$error filled by the AngularJS validation
mechanism. The placeholder for the error object would clash with ng-model, if the form name is identical to the
scope prefix. Therefore, just remember to use different names.

2.5.2 Customize detected and potential validation errors

If a form with AngularJS validation is rendered, each input field is prefixed with an unsorted list of potential
validation errors. For each possible constraint violation, a list item containing a descriptive message is added to

2.5. Validate Django forms using AngularJS 15

https://docs.djangoproject.com/en/dev/ref/forms/api/#django.forms.BoundField.errors

django-angular Documentation, Release 0.8.3

that list.

If a client enters invalid data into that form, AngularJS unhides one of these prepared error messages, using ng-show.
The displayed message text is exactly the same as would be shown if the server side code complains about invalid data
during form validation. These prepared error messages can be customized during form field definition.

The default error list is rendered as <ul class="djng-form-errors">.... To each of this er-
ror list, the attribute class="invalid" is added. The last list-item <li class="valid"> is somehow
special, as it is only visible if the corresponding input field contains valid data. By using special style sheets, one can
for instance add a green tick after a validated input field, to signal that everything is OK.

The styling of these validation elements must be done through CSS, for example with:

ul.djng-form-errors {
margin-left: 0;
display: inline-block;
list-style-type: none;

}
ul.djng-form-errors li.invalid {

color: #e9322d;
}
ul.djng-form-errors li.invalid:before {

content: "\2716\20"; /* adds a red cross before the error message */
}
ul.djng-form-errors li.valid:before {

color: #00c900;
content: "\2714"; /* adds a green tick */

}

If you desire an alternative CSS class or an alternative way of rendering the list of errors, then initialize the form
instance with

class MyErrorList(list):
rendering methods go here

during form instantiation
my_form = MyForm(error_class=MyErrorList)

Refer to TupleErrorList on how to implement an alternative error list renderer. Currently this error list renderer,
renders two -elements for each input field, one to be shown for pristine forms and one to be shown for dirty
forms.

Adding an AngularJS directive for validating form fields

Sometimes it can be useful to add a generic field validator on the client side, which can be controlled by the form’s
definition on the server. One such example is Django’s DateField:

from django import forms

class MyForm(forms.Form):
other fields
date = forms.DateField(label='Date',

widget=forms.widgets.DateInput(attrs={'validate-date': '^(\d{4})-(\d{1,2})-(\d{1,2})$'}))

Since AngularJS can not validate dates, such a field requires a customized directive, which with the above definition,
will be added as new attribute to the input element for date:

<input name="date" ng-model="my_form_data.birth_date" type="text" validate-date="^(\d{4})-(\d{1,2})-(\d{1,2})$" />

16 Chapter 2. Contents

http://docs.angularjs.org/api/ng.directive:ngShow
https://docs.djangoproject.com/en/dev/ref/forms/fields/#error-messages

django-angular Documentation, Release 0.8.3

If your AngularJS application has been initialized with

angular.module('MyApp', ['djng.forms']);

then this new attribute is detected by the AngularJS directive validateDate, which in turn checks the date for valid
input and shows the content of the errors fields, if not.

If you need to write a reusable component for customized form fields, refer to that directive as a starting point.

2.6 Tutorial: Django Forms with AngularJS

Django offers an excellent Form framework which is responsible for rendering and validating HTML forms. Since
Django’s design philosophy is to be independent of the styling and JavaScript, this Form framework requires some
adoption in order to play well with AngularJS and optionally Bootstrap.

A common technique to adopt the styling of a Django Form, is to extend the template so that each Form field is
rendered by hand written HTML. This of course leads to code duplication and is a violation of the DRY principle.

An alternative technique is to add crispy-forms to your project and enrich the Django Forms with a helper class.
Unfortunately, crispy-form does not work very well with django-angular. In order to add the same functionality in a
“DRY” manner, a special Mixin class can be added to your forms, rather than having to work with helper-classes.

This tutorial attempts to explain how to combine the Django Form framework in combination with AngularJS and
Bootstrap.

2.6.1 Basic Form Submission

Lets start with a very basic example, a functioning demo is available here: http://django-
angular.awesto.com/classic_form/

Say, we have a simple but rather long Form definition, to subscribe a person wanting to visit us:

Since we want to render this form in a DRY manner, our favorite template syntax is something such as:

<form name="{{ form.form_name }}" method="post" action=".">
{% csrf_token %}
{{ form }}
<input type="submit" value="Subscribe">

</form>

In this example, the whole form is rendered in one pass including all HTML elements, such as <label>, <select>,
<option> and <input>. Additionally, bound forms are rendered with their preset values and a list of errors, if the
previous Form validation did not succeed.

The Django Form framework comes with three different rendering methods: as_p(), as_ul() and as_table()
(the default). Unfortunately, these three rendering methods are not suitable for nowadays needs, such as Bootstrap
styling and Ajax based Form validation.

In order to be more flexible without having to abandon the “DRY” principle, the above SubscriptionForm has
been enriched by the Mixin class Bootstrap3FormMixin. This class adds an additional method as_div(),
which is responsible for rendering the Form suitable for Bootstrap styling.

Additionally, this Mixin class wraps the list of validation errors occurred during the last Form validation into the
AngularJS directive ng-show, so that error messages disappear after the user starts typing, and thus puts the Form
into a “dirty”, or in other words “non-pristine”, state.

You can test this yourself, by leaving out some fields or entering invalid values and submitting the Form.

2.6. Tutorial: Django Forms with AngularJS 17

http://django-crispy-forms.readthedocs.org/
http://django-angular.awesto.com/classic_form/
http://django-angular.awesto.com/classic_form/

django-angular Documentation, Release 0.8.3

Bound Form in AngularJS

AngularJS does not take into account the concept of bound Forms. Therefore, input fields rendered with preset values,
are displayed as empty fields. To circumvent this, the django-angular Form directive re-enables the rendering of the
bound field values.

Dynamically Hiding Form Fields for Bootstrap

A common use case is to hide a form field based on the value of another. For example, to hide the phone field if the
user selects Female within SubscriptionForm, overwrite field_css_classes on SubscriptionForm:

field_css_classes = {
'*': 'form-group has-feedback',
'phone': "ng-class:{'ng-hide':sex==='f'}",

}

field_css_classes adds css classes to the wrapper div surrounding individual fields in bootstrap. In
the above example, ’*’ adds the classes form-group has-feedback to all fields within the form and
’ng-class:{"ng-hide":sex==="f"}’ is added only to the phone field. Only Angular directives that can be
used as CSS classes are allowed within field_css_classes. Additionally, if specified as a string, the string may
not contain any spaces or double quotes. However, if specified as a list, spaces can be used, and the above example
can be rewritten as:

field_css_classes = {
'*': 'form-group has-feedback',
'phone': ["ng-class: {'ng-hide': sex==='f'};"],

}

By adding the keyword ’__default__’ to this list, the CSS classes for the default entry, ie. ’*’, are merged with
the CSS classes for the current field.

Adding an asterisk for required fields

An asterisk is often added after labels on required fields (like with django-crispy-forms for example). This can
be accomplished by using native Django and CSS. To do this, set the required_css_class attribute on
SubscriptionForm (see Django documentation).

required_css_class = 'djng-field-required'

Next, add the CSS:

label.djng-field-required::after {
content: "\00a0*";

}

2.6.2 Client-side Form validation

To enable client-side Form validation, simply add the mixin class NgFormValidationMixin to the
SubscriptionForm class:

class SubscriptionForm(NgFormValidationMixin, Bootstrap3FormMixin, forms.Form):
form fields as usual

Here the rendered Form contains all the AngularJS directives as required for client side Form validation. If an entered
value does not match the criteria as defined by the definition of SubscriptionForm, AngularJS will notify the
user immediately

18 Chapter 2. Contents

https://docs.djangoproject.com/en/stable/ref/forms/api/#django.forms.Form.required_css_class

django-angular Documentation, Release 0.8.3

2.7 Perform basic CRUD operations

When using Angular’s $resource to build services, each service comes with free CRUD (create, read, update, delete)
methods:

{ 'get': {method:'GET'},
'save': {method:'POST'},
'query': {method:'GET', isArray:true},
'remove': {method:'DELETE'},
'delete': {method:'DELETE'}

};

Of course this need support on the server side. This can easily be done with django-angular‘s NgCRUDView.

Note: remove() and delete() do exactly the same thing. Usage of remove() is encouraged, since delete
is a reserved word in IE.

2.7.1 Configuration

Subclass NgCRUDView and override model attribute:

from djng.views.crud import NgCRUDView

class MyCRUDView(NgCRUDView):
model = MyModel

Add urlconf entry pointing to the view:
...
url(r'^crud/mymodel/?$', MyCRUDView.as_view(), name='my_crud_view'),
...

Set up Angular service using $resource:

var myServices = angular.module('myServices', ['ngResource']);

myServices.factory('MyModel', ['$resource', function($resource) {
return $resource('/crud/mymodel/', {'pk': '@pk'}, {
});

}]);

Note: Since there is a known bug with $resource not respecting trailing slash, the urls in Django urlconf used by
$resource must either not have trailing slash or it should be optional (preferred) - e.g. url/?. Adding the trailing
slash to the $resource configuration regardless (/crud/mymodel/) ensures future compatibility in case the bug gets
fixed and will then follow Django’s trailing slash convention. This has been fixed in AngularJS 1.3. More information
here trailingSlashBugFix

Another quick change is required to Angular app config, without this DELETE requests fail CSRF test:

var my_app = angular.module('myApp', [/* other dependencies */, 'ngCookies']).run(
function($http, $cookies) {

$http.defaults.headers.post['X-CSRFToken'] = $cookies.csrftoken;
// Add the following two lines
$http.defaults.xsrfCookieName = 'csrftoken';

2.7. Perform basic CRUD operations 19

http://docs.angularjs.org/api/ngResource.\protect \T1\textdollar resource
https://github.com/kwk/docker-registry-frontend/commit/d2b34b79c669d68bb1c587aab819b48157a790e7

django-angular Documentation, Release 0.8.3

$http.defaults.xsrfHeaderName = 'X-CSRFToken';
});

That’s it. Now you can use CRUD methods.

2.7.2 Optional attributes

The following options are currently available to subclasses of NgCRUDView:

fields

Set this to a tuple or list of field names for only retrieving a subset of model fields during a get or query operation. Al-
ternatively, if this may vary (e.g. based on query parameters or between get and query) override the get_fields()
method instead.

With None (default), all model fields are returned. The object identifier (pk) is always provided, regardless of the
selection.

form_class

Set this to a specific form for your model to perform custom validation with it. Alternatively, if it may vary you can
override the get_form_class() method instead.

With None (default), a modelForm including all fields will be generated and used.

slug_field

Similar to Django’s SingleObjectMixin, objects can be selected using an alternative key such as a title or a user name.
Especially when using the ngRoute module of AngularJS, this makes construction of descriptive URLs easier. Query
parameters can be extracted directly from $route or $routeParams and passed to the query.

This attribute (default is ’slug’) describes the field name in the model as well as the query parameter from the client.
For example, if it is set to ’name’, perform a query using

var model = MyModel.get({name: "My name"});

Note: Although the view will not enforce it, it is strongly recommended that you only use unique fields for this
purpose. Otherwise this can lead to a MultipleObjectsReturned exception, which is not handled by this
implementation.

Also note that you still need to pass the object identifier pk on update and delete operations. Whereas for save
operations, the check on pk makes the distinction between an update and a create operation, this restriction on deletes
is only for safety purposes.

allowed_methods

By default, NgCRUDView maps the request to the corresponding django-angular method, e.g. a DELETE request
would call the ng_delete method.

allowed_methods is set by default to [’GET’, ’POST’, ’DELETE’]. If you need to prevent any method,
you can overrride the allowed_methods attributes. Alternatively, you can use the exclude_methods attributes.

20 Chapter 2. Contents

http://docs.angularjs.org/api/ngRoute
http://docs.angularjs.org/api/ngRoute/service/\protect \T1\textdollar route
http://docs.angularjs.org/api/ngRoute/service/\protect \T1\textdollar routeParams

django-angular Documentation, Release 0.8.3

exclude_methods

To allow all methods by default, exclude_methods is set as an empty list. To exclude any method, you can override
this attribute to exclude the ’GET’, ’POST’ or ’DELETE’. See allowed_methods for more informations.

2.7.3 Usage example

myControllers.controller('myCtrl', ['$scope', 'MyModel', function ($scope, MyModel) {
// Query returns an array of objects, MyModel.objects.all() by default
$scope.models = MyModel.query();

// Getting a single object
var model = MyModel.get({pk: 1});

// We can crete new objects
var new_model = new MyModel({name: 'New name'});
new_model.$save(function(){

$scope.models.push(new_model);
});
// In callback we push our new object to the models array

// Updating objects
new_model.name = 'Test name';
new_model.$save();

// Deleting objects
new_model.$remove();
// This deletes the object on server, but it still exists in the models array
// To delete it in frontend we have to remove it from the models array

}]);

Note: In real world applications you might want to restrict access to certain methods. This can be done using
decorators, such as @login_required. For additional functionality JSONResponseMixin and NgCRUDView can
be used together.

2.8 Remote Method Invocation

Wouldn’t it be nice to call a Django view method, directly from an AngularJS controller, similar to a Remote Procedure
Call or say better Remote Method Invocation?

2.8.1 Single Page Applications

By nature, Single Page Web Applications implemented in Django, require one single View. These kind of applications
can however not always be build around the four possible request methods GET, PUT, POST and DELETE. They rather
require many different entry points to fulfill the communication between the client and the server.

Normally, this is done by adding a key to the request data, which upon evaluation calls the appropriate method.
However, such an approach is cumbersome and error-prone.

2.8. Remote Method Invocation 21

http://en.wikipedia.org/wiki/Remote_procedure_calls
http://en.wikipedia.org/wiki/Remote_procedure_calls

django-angular Documentation, Release 0.8.3

Django-Angular offers some helper functions, which allows the client to call a Django’s View method, just as if it
would be a normal asynchronous JavaScript function. To achieve this, let the View’s class additionally inherit from
JSONResponseMixin:

from django.views.generic import View
from djng.views.mixins import JSONResponseMixin, allow_remote_invocation

class MyJSONView(JSONResponseMixin, View):
other view methods

@allow_remote_invocation
def process_something(self, in_data):

process in_data
out_data = {

'foo': 'bar',
'success': True,

}
return out_data

In this Django View, the method process_something is decorated with @allow_remote_invocation. It
now can be invoked directly from an AngularJS controller or directive. To handle this in an ubiquitous manner,
Django-Angular implements two special template tags, which exports all methods allowed for remote invocation to
the provided AngularJS service djangoRMI.

Template Tag djng_all_rmi

The AngularJS Provider djangoRMIProvider shall be configured during the initialization of the client side, such
as:

{% load djng_tags %}
...
<script type="text/javascript">
var tags = {% djng_all_rmi %};
my_app.config(function(djangoRMIProvider) {

djangoRMIProvider.configure(tags);
});
</script>

This makes available all methods allowed for remote invocation, from all View classes of your Django project.

Note: In order to have your methods working, the associated urls need to be named.

Template Tag djng_current_rmi

Alternatively, the AngularJS Provider djangoRMIProvider can be configured during the initialization of the client
side, such as:

{% load djng_tags %}
...
<script type="text/javascript">
var tags = {% djng_current_rmi %};
my_app.config(function(djangoRMIProvider) {

djangoRMIProvider.configure(tags);
});
</script>

22 Chapter 2. Contents

django-angular Documentation, Release 0.8.3

This makes available all methods allowed for remote invocation, from the current View class, ie. the one rendering the
current page.

Note: In order to have your methods working, the associated urls need to be named.

Let the client invoke an allowed method from a Django View

By injecting the service djangoRMI into an AngularJS controller, allowed methods from the Django View which
renders the current page, can be invoked directly from JavaScript. This example shows how to call the above Python
method process_something, when configured using the template tag djng_current_rmi:

my_app.controller("SinglePageCtlr", function($scope, djangoRMI) {
$scope.invoke = function() {

var in_data = { some: 'data' };
djangoRMI.process_something(in_data)

.success(function(out_data) {
// do something with out_data

});
};

});

If djangoRMIProvider is configured using the template tag djng_all_rmi, the allowed methods are grouped
into objects named by their url_name. If these URL patterns are part of a namespace, the above objects furthermore
are grouped into objects named by their namespace.

Note: djangoRMI is a simple wrapper around AngularJS’s built in $http service. However, it automatically determines
the correct URL and embeds the method name into the special HTTP-header DjNg-Remote-Method. In all other
aspects, it behaves like the $http service.

2.8.2 Dispatching Ajax requests using method GET

Sometimes you only have to retrieve some data from the server. If you prefer to fetch this data using an ordinary GET
request, ie. one without the special AngularJS provider djangoRMI, then it is possible to hard-code the method for
invocation into the urlpatterns inside the URL dispatcher.

class MyResponseView(JSONResponseMixin, View):
def get_some_data(self):

return {'foo': 'bar'}

def get_other_data(self):
return ['baz', 'cap']

urlpatterns = patterns('',
...
url(r'^fetch-some-data.json$', MyResponseView.as_view(), {'invoke_method': 'get_some_data'}),
url(r'^fetch-other-data.json$', MyResponseView.as_view(), {'invoke_method': 'get_other_data'}),
...

)

If a client calls the URL /fetch-some-data.json, the responding view dispatches incoming requests directly
onto the method get_some_data. This kind of invocation only works for GET requests. Here these methods do

2.8. Remote Method Invocation 23

https://docs.djangoproject.com/en/dev/ref/urlresolvers/#django.core.urlresolvers.ResolverMatch.url_name
https://docs.djangoproject.com/en/dev/ref/urls/#patterns
https://docs.djangoproject.com/en/dev/ref/urlresolvers/#django.core.urlresolvers.ResolverMatch.namespace
https://code.angularjs.org/1.2.16/docs/api/ng/service/\protect \T1\textdollar http
https://code.angularjs.org/1.2.16/docs/api/ng/service/\protect \T1\textdollar http
https://docs.djangoproject.com/en/dev/ref/urls/#django.conf.urls.patterns

django-angular Documentation, Release 0.8.3

not require the decorator @allow_remote_invocation, since now the server-side programmer is responsible
for choosing the correct method and thus a malicious client cannot bypass the intended behavior.

2.9 Cross Site Request Forgery protection

Ajax requests submitted using method POST are put to a similar risk for Cross Site Request Forgeries as HTTP forms.
This type of attack occurs when a malicious Web site is able to invoke an Ajax request onto your Web site. In Django,
one should always add the template tag csrf_token to render a hidden input field containing the token, inside each form
submitted by method POST.

When it comes to making an Ajax request, it normally is not possible to pass that token using a Javascript object, be-
cause scripts usually are static and no secret can be added dynamically. AngularJS natively supports CSRF protection,
only some minor configuration is required to work with Django.

2.9.1 Configure Angular for Django’s CSRF protection

Angular looks for XSRF-TOKEN cookie and submits it in X-XSRF-TOKEN http header, while Django sets
csrftoken cookie and expects X-CSRFToken http header. All we have to do is change the name of cookie
and header Angular uses. This is best done in config block:

var my_app = angular.module('myApp', [/* dependencies */]).config(function($httpProvider) {
$httpProvider.defaults.xsrfCookieName = 'csrftoken';
$httpProvider.defaults.xsrfHeaderName = 'X-CSRFToken';

});

When using this approach, ensure that the CSRF cookie is not configured as HTTP_ONLY, otherwise for security
reasons that value can’t be accessed from JavaScript.

2.10 Share a template between Django and AngularJS

Templates syntax for Django and AngularJS is very similar, and with some caveats it is possible to reuse a Django
template for rendering in AngularJS. The classical approach to embed AngularJS template code inside Django’s tem-
plate code, is to use the {% verbatim %} template tag. This tag however deactivates all Django’s template parsing,
so every block tag must be placed outside a {% verbatim %} ... {% endverbatim %} section. This makes
mixed template coding quite messy.

2.10.1 For this purpose use the template tag {% angularjs %}

The template tag {% angularjs %} ... {% endangularjs %} delegates Django’s variable expansion to An-
gularJS, but continues to process the Django block tags, such as {% if ... %}, {% for ... %}, {% load
... %}, etc.

Conditionally activate variable expansion

The template tag {% angularjs <arg> %} takes one optional argument, which when it evaluates to true, it turns
on AngularJS’s variable expansion. Otherwise, if it evaluates to false, it turns on Django’s variable expansion. This
becomes handy when using include snippets which then can be used by both, the client and the server side template
rendering engines.

24 Chapter 2. Contents

http://www.squarefree.com/securitytips/web-developers.html#CSRF
https://docs.djangoproject.com/en/1.6/ref/templates/builtins/#csrf-token
http://www.codinghorror.com/blog/2008/08/protecting-your-cookies-httponly.html

django-angular Documentation, Release 0.8.3

2.10.2 Example

A Django ListView produces a list of items and this list is serializable as JSON. For browsers without JavaScript and
for crawlers from search engines, these items shall be rendered through the Django’s template engine. Otherwise,
AngularJS shall iterate over this list and render these items.

Template used by the list view:

<div ng-if="!items">
{% for item in items %}

{% include "path/to/includes/item-detail.html" with ng=0 %}
{% endfor %}
</div>
<div ng-if="items">
{% include "path/to/includes/item-detail.html" with ng=1 %}
</div>

Here the scope variable items is set by a surrounding ng-controller. As we can see, the template
path/to/includes/item-detail.html is included twice, once defining an additional context variable ng
as true and later, the same include with that variable as false.

Assume, this list view shall render a model, which contains the following fields:

class Item(models.Model):
title = CharField(max_length=50)
image = ImageField() # built-in or from a third party library
description = HTMLField() # from a third party library

def get_absolute_url(self):
return reverse(...)

Now, the included template can be written as:

{% load djng_tags %}
{% angularjs ng %}
<div{% if ng %} ng-repeat="item in items"{% endif %}>

<h4><a ng-href="{{ item.absolute_url }}"{% if not ng %} href="{{ item.absolute_url }}"{% endif %}>{{ item.name }}</h4>

<div{% if ng %} ng-bind-html="item.description"{% endif %}>{% if not ng %}{{ item.description }}{% endif %}</div>

</div>
{% endangularjs %}

A few things to note here:

The content between the template tags {% angularjs ng %} and {% endangularjs %} is rendered through
the Django template engine as usual, if the context variable ng evaluates to false. Otherwise all variable expansions,
ie. {{ varname }} or {{ varname|filter }} are kept as-is in HTML, while block tags are expanded by the
Django template engine.

The context data, as created by the list view, must be processed into a list serializable as JSON. This list then can be
used directly by the Django template renderer or transferred to the AngularJS engine, using a XMLHttpRequest or
other means.

This means that the default method get_context_data() must resolve all object fields into basic values, since
invocations to models methods, such as get_absolute_url(), now can not be done by the template engine,
during the iteration step, ie. {% for item in items %}. The same applies for image thumbnailing, etc.

In AngularJS references onto URLs and image sources must be done with <a ng-href="..."> and , rather than using or respectively. Therefore, while
rendering the Django template, these fields are added twice.

2.10. Share a template between Django and AngularJS 25

https://docs.angularjs.org/api/ng/directive/ngHref
https://docs.angularjs.org/api/ng/directive/ngSrc

django-angular Documentation, Release 0.8.3

In AngularJS, text data containing HTML tags, must be rendered using ng-bind-html rather than using the mustache
syntax. This is to ensure, that unverified content from upstream sources is sanitized. We can assert this, since this text
content is coming from the database field description and thus is marked as safe string by Django.

Python List / Javascript Arrays

The Django template engine accesses members of Python dictionaries using the dot notation. This is the same notation
as used by JavaScript to access members of objects. When accessing lists in Django templates or arrays in JavaScript,
this notation is not compatible any more. Therefore as convenience, always use the Django template notation, even
for JavaScript arrays. Say, in Python you have a list of objects:

somelist = [{'member': 'first'}, {'member': 'second'}, {'member': 'third'},]

To access the third member, Django’s template code shall be written as:

{{ somelist.2.member }}

when this block is resolved for AngularJS template rendering, the above code is expanded to:

{{ somelist[2].member }}

otherwise it would be impossible to reuse Python lists converted to JavaScript arrays inside the same template code.

Conditionally bind scope variables to an element with djng-bind-if

Sometimes it makes sense to bind the scope variable to an element if it exists. Otherwise render the same variable
from Django’s context. Example:

{{ some_prefix.value }}

functionally, this is equivalent to:

{% verbatim %}{{ some_prefix.value }}{% endverbatim %}
{{ some_prefix.value }}

but less verbose and easier to read.

2.11 Manage Django URLs for AngularJS

AngularJS controllers communicating with the Django application through Ajax, often require URLs, pointing to some
of the views of your application. Don’t fall into temptation to hard code such a URL into the client side controller
code. Even worse would be to create Javascript dynamically using a template engine. There is a clean and simple
solution to solve this problem.

Note: Until version 0.7.14 django-angular reversed all existing URLs of a project and created an object exposing
them to Javascript. Documentation for now deprecated approach is available here.

Starting with version 0.7.15, django-angular provides a new way to handle URLs, which offers the reversing func-
tionality directly to AngularJS modules.

This service is provided by djangoUrl.reverse(name, args_or_kwargs) method. It behaves exactly like
Django’s URL template tag.

26 Chapter 2. Contents

https://docs.angularjs.org/api/ng/directive/ngBindHtml
https://docs.djangoproject.com/en/dev/ref/utils/#module-django.utils.safestring
https://docs.djangoproject.com/en/dev/ref/templates/builtins/#url

django-angular Documentation, Release 0.8.3

2.11.1 Basic operation principle

django-angular encodes the parameters passed to djangoUrl.reverse() into a special URL starting with
/angular/reverse/.... This URL is used as a new entry point for the real HTTP invocation.

2.11.2 Installation

Angular

• Include django-angular.js:

<script src="{% static 'djng/js/django-angular.js' %}"></script>

• Add djng.urls as a dependency for you app:

<script>
var my_app = angular.module('MyApp', ['djng.urls', /* other dependencies */]);

</script>

The djangoUrl service is now available through dependency injection to all directives and controllers.

Setting via Django Middleware

• Add ’djng.middleware.AngularUrlMiddleware’ to MIDDLEWARE_CLASSES in your Django

settings.py file:

MIDDLEWARE_CLASSES = (
'djng.middleware.AngularUrlMiddleware',
Other middlewares

)

Warning: This must be the first middleware included in MIDDLEWARE_CLASSES

Using this approach adds some magicness to your URL routing, because the AngularUrlMiddleware class by-
passes the HTTP request from normal URL resolving and calls the corresponding view function directly.

2.11.3 Usage

The reversing functionality is provided by:

djangoUrl.reverse(name, args_or_kwargs)

This method behaves exactly like Django’s URL template tag {% url ’named:resource’ %}.

Parameters

• name: The URL name you wish to reverse, exactly the same as what you would use in {% url %} template
tag.

• args_or_kwargs (optional): An array of arguments, e.g. [’article’, 4] or an object of keyword
arguments, such as {’type’: ’article’, ’id’: 4}.

2.11. Manage Django URLs for AngularJS 27

http://docs.angularjs.org/guide/di
https://docs.djangoproject.com/en/dev/ref/templates/builtins/#url

django-angular Documentation, Release 0.8.3

Examples

A typical Angular Controller would use the service djangoUrl such as:

var myApp = angular.module('MyApp', ['djng.urls']);

myApp.controller('RemoteItemCtrl', function($scope, $http, $log, djangoUrl) {

var fetchItemURL = djangoUrl.reverse('namespace:fetch-item');

$http.get(fetchItemURL).success(function(item) {
$log.info('Fetched item: ' + item);

}).error(function(msg) {
console.error('Unable to fetch item. Reason: ' + msg);

});
});

and with args:

$http.get(djangoUrl.reverse('api:articles', [1]))

or with kwargs:

$http.get(djangoUrl.reverse('api:articles', {'id': 1}))

Parametrized URLs

You can pass a “parametrized” arg or kwarg to djangoUrl.reverse() call to be used with $resource.

var url = djangoUrl.reverse('orders:order_buyer_detail', {id: ':id'});
// Returns '/angular/reverse/?djng_url_name=orders%3Aorder_buyer_detail&djng_url_kwarg_id=:id'
// $resource can than replace the ':id' part

var myRes = $resource(url);
myRes.query({id:2}); // Will call reverse('orders:order_buyer_detail', kwargs={'id':2}) url

// If :param isn't set it will be ignored, e.g.
myRes.query(); // Will call reverse('orders:order_buyer_detail') url

// with @param $resource will autofill param if object has 'param' attribute
var CreditCard = $resource(djangoUrl.reverse('card', {id: ':id'}), {id: '@id'});
var card = CreditCard.get({id: 3}, function (success) {
card.holder = 'John Doe';
card.$save() // Will correctly POST to reverse('card', kwargs={'id':3})

})

Additional notes

If you want to override reverse url, e.g. if django app isn’t on top level or you want to call another server it can be set
in .config() stage:

myApp.config(function(djangoUrlProvider) {
djangoUrlProvider.setReverseUrl('custom.com/angular/reverse/');

});

28 Chapter 2. Contents

https://docs.angularjs.org/api/ngResource/service/\protect \T1\textdollar resource

django-angular Documentation, Release 0.8.3

Warning: The path of request you want to reverse must still remain /angular/reverse/ on django server,
so that middleware knows it should be reversed.

2.12 Three-way data-binding

One of AngularJS biggest selling propositions is its two-way data-binding. Two way data-binding is an automatic way
of updating the view whenever the model changes, as well as updating the model whenever the view changes.

With djng and the additional module django-websocket-redis, one can extend this feature to reflect all changes to a
model, back and forward with a corresponding object stored on the server. This means that the server “sees” whenever
the model on the client changes and can by itself, modify values on the client side at any time, without having the
client to poll for new messages. This is very useful, when the server wants to inform the client about asynchronous
events such as sport results, chat messages or multi-player game events.

2.12.1 Installation

If you want to use three-way data-binding with Django, the webbrowser must have support for websockets. Nowadays,
most modern browsers do so.

Install django-websocket-redis from PyPI:

pip install django-websocket-redis

and follow the configuration instructions.

2.12.2 Demo

In the examples directory there is a demo showing the capabilities. If ws4redis can be found in the Python search
path, this special demo should be available together with the other two examples. Run the demo server:

cd examples
./manage runserver

point a browser onto http://localhost:8000/threeway_databinding/ and fill the input fields. Point a second browser onto
the same URL. The fields content should be the same in all browsers. Change some data, the fields content should
update concurrently in all attached browsers.

2.12.3 Add three-way data-binding to an AngularJS application

Refer to the Javascript file django-angular.js somewhere on your page:

{% load static %}
<script src="{% static 'djng/js/django-angular.min.js' %}" type="text/javascript"></script>

add the module dependency to your application initialization:

var my_app = angular.module('myApp', [/* other dependencies */, 'djng.websocket']);

configure the websocket module with a URL prefix of your choice:

2.12. Three-way data-binding 29

http://docs.angularjs.org/guide/databinding
https://github.com/jrief/django-websocket-redis
http://django-websocket-redis.readthedocs.org/en/latest/installation.html
http://localhost:8000/threeway_databinding/

django-angular Documentation, Release 0.8.3

my_app.config(['djangoWebsocketProvider', function(djangoWebsocketProvider) {
// use WEBSOCKET_URI from django settings as the websocket's prefix
djangoWebsocketProvider.setURI('{{ WEBSOCKET_URI }}');
djangoWebsocketProvider.setHeartbeat({{ WS4REDIS_HEARTBEAT }});

// optionally inform about the connection status in the browser's console
djangoWebsocketProvider.setLogLevel('debug');

}]);

If you want to bind the data model in one of your AngularJS controllers, you must inject the provider djangoWeb-
socket into this controller and then attach the websocket to the server.

my_app.controller('MyController', function($scope, djangoWebsocket) {
djangoWebsocket.connect($scope, 'my_collection', 'foobar', ['subscribe-broadcast', 'publish-broadcast']);

// use $scope.my_collection as root object for the data which shall be three-way bound
});

This creates a websocket attached to the server sides message queue via the module ws4redis. It then shallow watches
the properties of the object named ’my_collection’, which contains the model data. It then fires whenever any
of the properties change (for arrays, this implies watching the array items; for object maps, this implies watching the
properties). If a change is detected, it is propagated up to the server. Changes made to the corresponding object on the
server side, are immediately send back to all clients listening on the named facility, referred here as foobar.

Note: This feature is new and experimental, but due to its big potential, it will be regarded as one of the key features
in future versions of django-angular.

2.13 Release History

2.13.1 0.8.3

• Refactored client side test runner to use npm instead of Grunt.

• Use tox to create the testing matrix.

• Fix #261: ModelMultipleChoiceField and CheckboxSelectMultiple.

• Deprecate {% csrf_value %} in favour of {{ csrf_token }}.

2.13.2 0.8.2

• On the client side, validation of the email address is done using the same regular expression as is used by Django.
Until 0.8.1, the less restrictive Angular validation patterns were used.

• Some widgets require more finegrained formatting capabilities.Added a slightly modified method
method:django.forms.utils.flatatt which can use its own context for formatting.

2.13.3 0.8.1

• Fixed a bug in NgModelFormMixin.get_form_data(): Using and ... or ... as ternary operator can have
unwanted side effects. Also changed other occurrences.

30 Chapter 2. Contents

django-angular Documentation, Release 0.8.3

2.13.4 0.8.0

• djangular has been renamed to djng and ng.django-... has been renamed to djng-.... This was
required by many users since it: - caused a naming conflict with another django app named djangular and -
the identifier “djangular” by many users was seen as a bad choice. - violated the AngularJS principle that only
their modules shall be prefixed with “ng”. Please read https://github.com/jrief/django-angular/issues/35 for the
preceded discussion on this topic.

• Support for ngMessages was removed again because - its code base was buggy and unmaintained - it does
not make much sense to reduce the amount of auto-generated HTML - it added an alternative form rendering
mixin, without any additional functionality

• In the <select> element, the default <option selected="selected"> did not work anymore. This
regression was introduced in 0.7.16.

2.13.5 0.7.16

• Ready for Django-1.9.

• Fixed: Non-ascii characters were not being processed correctly by
django.http.request.QueryDict.init.

• In JavaScript, replaced console.log by $log.log.

• Use decimal base on invocation of parseInt.

• Use square brackets to access scope members, which otherwise won’t support fields containing -.

• templatetag load_djng_urls has been removed.

• For CRUD, check if request method is allowed.

• Fixed djngError directive, when using AngularJS-1.3.

• Added support for ngMessages, as available with AngularJS-1.3.

2.13.6 0.7.15

• Simplified middleware for reversing the URL.

• Reversing url in djangoUrl service can now be overriden.

2.13.7 0.7.14

• Supporting Django-1.8.

• The widget bootstrap3.widgets.CheckboxInput got a keyword to set the choice label of a field. This
allows to style this kind of field individually in a Django Form.

2.13.8 0.7.13

• Change for Forms inheriting from NgFormBaseMixin using field_css_classes as dict: CSS classes
specified as default now must explicitly be added the fields defining their own CSS classes. Before this was
implicit.

• Added AngularJS directive djng-bind-if. See docs for details.

2.13. Release History 31

https://github.com/jrief/django-angular/issues/35

django-angular Documentation, Release 0.8.3

• Reverted fix for FireFox checkbox change sync issue (135) since it manipulated the DOM. Instead added
scope.$apply() which fixes the issue on FF.

• In BS3 styling, added CheckboxFieldRenderer to CheckboxInlineFieldRenderer (the default),
so that forms with multiple checkbox input fields can be rendered as block items instead of inlines.

• In BS3 styling, added RadioFieldRenderer to RadioInlineFieldRenderer (the default), so that
forms with multiple radio input fields can be rendered as block items instead of inlines.

• Fixed ‘classic form’ issue whereby ngModel was not being added to select of textarea elements, so
returned errors where not displayed.

2.13.9 0.7.12

• No functional changes.

2.13.10 0.7.11

• Using field.html_name instead of field.name. Otherwise add_prefix() function on form objects
doesn’t work properly.

• Fixed Firefox checkbox change sync issue caused by click and change firing in opposite order to other
browsers. Switched to ng-change to normalise behaviour.

• Moved rejected error cleanup logic into field.clearRejected method, so that it can be removed from
anywhere that has access to the field.

• Fixed issue in rejected error clean up loop.

• Added missing subfield cleanup to rejected error cleanup loop.

• Added AngularJS service djangoUrl to resolve URLs on the client in the same way as on the server.

2.13.11 0.7.10

• Fixed inheritance problem (#122) caused by a metaclass conflicting with Django’s
DeclarativeFieldsMetaclass. This now should fix some issues when using forms.ModelForm.
This fix changed the API slightly.

• Fixed expansion for templatetag {% angularjs %} (#117) when using lists in Python / arrays in JavaScript.

2.13.12 0.7.9

• TupleErrorList has been adopted to fully support Django-1.7.

2.13.13 0.7.8

• Fixed: ng-minlength and ng-maxlength are not set to None if unset.

• Fixed: Concatenated latest version of django-angular.js.

32 Chapter 2. Contents

django-angular Documentation, Release 0.8.3

2.13.14 0.7.7

• Refactored the code base. It now is much easier to understand the code and to add custom Fields and Widgets.

• Fixed the behaviour of all Widgets offered by Django. They now all validate independently of the method (Post
or Ajax) used to submit data to the server.

2.13.15 0.7.6

• Fixed regression when using Bootstrap3FormMixin in combination with
widgets.CheckboxSelectMultiple.

2.13.16 0.7.5

• Added: Template tag {% angularjs %} which allows to share templates between Django and AngularJS.

• Fixed: Using {{ field.error }} returned unsafe text.

• Fixed: Adjust the regular expression and run grunt build.

2.13.17 0.7.4

• Fixed: Error rendering while for hidden input fields.

• Fixed: Bootstrap3 styling: label for field was rendered as lazy object instead of string.

• Added: Url resolvers for angular controllers.

2.13.18 0.7.3

• Added support to render a Django Form using a plugable style. Bootstrap3 styling has been implemented.

• Added AngularJS directive for <input> fields: They now add a dummy ngModel to some input fields, so that
Forms using the NgFormBaseMixin honor the pristine state and display an error list from the bound form.

• Replaced AngularJS directive for form by a directive for ngModel. This directive restores the values in bound
forms otherwise not vivible in the browser.

• Fixed: Instead of adding attributes to Form Field Widgets, those additional attributes now are added on the fly
while rendering. This caused some problems, when Forms were reused in different contexts.

• Fixed: Behavior for BooleanField and MultipleChoiceField has been fixed so AngularJS form validation.

2.13.19 0.7.2

• Fixed: select fields, multiple select fields, radio and checkbox input fields and text areas are handled by the
built-in form directive to adopt Django’s bound forms for AngularJS.

2.13. Release History 33

django-angular Documentation, Release 0.8.3

2.13.20 0.7.1

• For remote method invocation, replace keyword action against a private HTTP-header
DjNg-Remote-Method. Added template tags djng_all_rmi and djng_current_rmi which
return a list of methods to be used for remote invocation.

• Experimental support for Python-3.3.

2.13.21 0.7.0

• Refactored errors handling code for form validation. It now is much easier and more flexible for mixing in other
form based classes.

• Added a date validator using an AngularJS directive. * Can be used as a starting point for other customized
validators.

• Added another view, which can be used for NgModelMixin without NgValidationMixin.

• Added new directory to handle client code. * Separated JS files for easier development. * Grunt now builds,
verifies and concatenates that code. * Karma and Jasmine run unit tests for client code. * A minified version of
django-angular.js is build by grunt and npm-uglify.

• Rewritten the demo pages to give a good starting point for your own projects.

2.13.22 0.6.3

• ADOPT YOUR SOURCES: The Javascript file /static/js/djng-websocket.js has been moved and
renamed to /static/djangular/js/django-angular.js

• Internal error messages generated by server side validation, now are mixed with AngularJS’s validation errors.

• A special list-item is added to the list of errors. It is shown if the input field contains valid data.

• Input fields of bound forms, now display the content of the field, as expected. This requires the Angular module
ng.django.forms.

2.13.23 0.6.2

• Refactored NgFormValidationMixin, so that potential AngularJS errors do not interfere with Django’s
internal error list. This now allows to use the same form definition for bound and unbound forms.

2.13.24 0.6.1

• Bug fix for CRUD view.

2.13.25 0.6.0

• Support for basic CRUD view.

2.13.26 0.5.0

• Added three way data binding.

34 Chapter 2. Contents

django-angular Documentation, Release 0.8.3

2.13.27 0.4.0

• Removed @csrf_exempt on dispatch method for Ajax requests.

2.13.28 0.3.0

Client side form validation for Django forms using AngularJS

2.13.29 0.2.2

• Removed now useless directive ‘auto-label’. For backwards compatibility see https://github.com/jrief/angular-
shims-placeholder

2.13.30 0.2.1

• Set Cache-Control: no-cache for Ajax GET requests.

2.13.31 0.2.0

• added handler to mixin class for ajax get requests.

• moved unit tests into testing directory.

• changed request.raw_post_data -> request.body.

• added possibility to pass get and post requests through to inherited view class.

2.13.32 0.1.4

• optimized CI process

2.13.33 0.1.3

• added first documents

2.13.34 0.1.2

• better packaging support

2.13.35 0.1.1

• fixed initial data in NgModelFormMixin

2.13.36 0.1.0

• initial revision

2.13. Release History 35

https://github.com/jrief/angular-shims-placeholder
https://github.com/jrief/angular-shims-placeholder

django-angular Documentation, Release 0.8.3

36 Chapter 2. Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

37

	Project's home
	Contents
	Installation
	Integrate AngularJS with Django
	Running the demos
	Integrate a Django form with an AngularJS model
	Validate Django forms using AngularJS
	Tutorial: Django Forms with AngularJS
	Perform basic CRUD operations
	Remote Method Invocation
	Cross Site Request Forgery protection
	Share a template between Django and AngularJS
	Manage Django URLs for AngularJS
	Three-way data-binding
	Release History

	Indices and tables

